1
|
Tokizaki T, Kanehara R, Maeda H, Tanaka K, Hashimoto M. Highly Functionalized Spirobisnaphthalenes from Roussoella sp. KT4147. JOURNAL OF NATURAL PRODUCTS 2024; 87:1798-1807. [PMID: 39018435 DOI: 10.1021/acs.jnatprod.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Highly functionalized spirobisnaphthalenes, preussomerins N (1) and O (2), and simpler compounds, such as 2,3-α-epoxypalmarumycin CP18 (3), 3α-hydroxy-CJ-12,372 (4), and 16 known structurally related congeners, were isolated from a culture broth of Roussoella sp. KT4147. Structural analysis revealed that 1 was a dimer of preussomerin G (6), connected by a nitrogen atom, and 2 was a derivative of 6 with a macommelin substructure. Preussomerin N (1) was considered to be biosynthetically derived via the Michael-type 1,4-addition of ammonia to 6, followed by another Michael addition to another molecule of 6. Contrarily, 2 was suggested to be derived through an endo-Diels-Alder cycloaddition between a diene derived from the (E)-enol form of macommelinal via an ene-reaction and dienophile 6. Compounds 1 and 2 exhibited potent cytotoxicity against COLO-201 human colorectal cancer cells.
Collapse
Affiliation(s)
- Taichiro Tokizaki
- Faculty of Agriculture and Life Science, Hirosaki University, 3-Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Ryuhi Kanehara
- Faculty of Agriculture and Life Science, Hirosaki University, 3-Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, 3-Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Kazuaki Tanaka
- Faculty of Agriculture and Life Science, Hirosaki University, 3-Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Masaru Hashimoto
- Faculty of Agriculture and Life Science, Hirosaki University, 3-Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| |
Collapse
|
2
|
Shi W, Chen J, Liao F, Li L, Yang Y, Yang X, Cai L, Ding Z. The cryptic metabolites and anti-phytopathogenic activities from Nigrospora lacticolonia and Penicillium rubens uncovered by the synergism with host Paris polyphylla, monoculture, and co-culture. Bioorg Chem 2024; 148:107438. [PMID: 38761703 DOI: 10.1016/j.bioorg.2024.107438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
The synergism of host Paris polyphylla medium, the monoculture, and the coculture led to seventeen new metabolites, including eight sesquiterpenes, 1-7 having uncommon structural motifs compared to similar caryophyllene derivatives, 8 with an unprecedented bicyclic framework, and three xyloketals (13-15) with unprecedented frameworks from Nigrospora lacticolonia; one polyketide, 17 with novel bicyclo [2.2.2] undecane skeleton, and five polyketide-terpenoid hybrids, 20 (one novel sulfated), 21-24 from Penicillium rubens. The structures were determined mainly by the NMR, HRESIMS, ECD calculation, and single-crystal X-ray diffraction. Nine cryptic compounds (2-4, 5, 12-15, 17) were produced by the inductions of host medium and the coculture. The compounds 13 from N. lacticolonia, 24-26, 28, 29, and 31 from P. rubens indicated significant antiphytopathogenic activities against N. lacticolonia with MICs at 2-4 μg/mL. Moreover, compounds 22-26, 28, 29, and 31 from P. rubens showed antifungal activities against P. rubens with MICs at 2-4 μg/mL. The synergistic effects of host medium and the coculture can induce the structural diversity of metabolites.
Collapse
Affiliation(s)
- Wenzhi Shi
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, P.R. China
| | - Jingxin Chen
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Fanrong Liao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Liying Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Yabin Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Xueqiong Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China.
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China.
| | - Zhongtao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, P.R. China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, P.R. China.
| |
Collapse
|
3
|
Shcherbinin VA, Nasibullina ER, Mendogralo EY, Uchuskin MG. Natural epoxyquinoids: isolation, biological activity and synthesis. An update. Org Biomol Chem 2023; 21:8215-8243. [PMID: 37812083 DOI: 10.1039/d3ob01141k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Epoxyquinoids are of continuing interest due to their wide natural distribution and diverse biological activities, including, but not limited to, antibacterial, antifungal, anticancer, enzyme inhibitory, and others. The last review on their total synthesis was published in 2017. Since then, almost 100 articles have been published on their isolation from nature and their biological profile. In addition, the review specifically considers synthesis, including total and enantioselective, as well as the development of shorter approaches for the construction of epoxyquinoids with complex chemical architecture. Thus, this review focuses on progress in this area in order to stimulate further research.
Collapse
Affiliation(s)
- Vitaly A Shcherbinin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, 119334 Moscow, Russian Federation
| | - Ekaterina R Nasibullina
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| | - Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| |
Collapse
|
4
|
Guo Q, Shi L, Wang X, Li D, Yin Z, Zhang J, Ding G, Chen L. Structures and Biological Activities of Secondary Metabolites from the Trichoderma genus (Covering 2018-2022). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13612-13632. [PMID: 37684097 DOI: 10.1021/acs.jafc.3c04540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Trichoderma, a genus with more than 400 species, has a long history of use as an industrial bioreactor, biofertilizer, and biocontrol agent. It is considered a significant source of secondary metabolites (SMs) that possess unique structural features and a wide range of bioactivities. In recent years, numerous secondary metabolites of Trichoderma, including terpenoids, polyketides, peptides, alkaloids, and steroids, have been identified. Most of these SMs displayed antimicrobial, cytotoxic, and antifungal effects. This review focuses on the structural diversity, biological activities, and structure-activity relationships (SARs) of the SMs isolated from Trichoderma covered from 2018 to 2022. This study provides insights into the exploration and utilization of bioactive compounds from Trichoderma species in the agriculture or pharmaceutical industry.
Collapse
Affiliation(s)
- Qingfeng Guo
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Lei Shi
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Xinyang Wang
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
- Henan University, Kaifeng 475004, People's Republic of China
| | - Dandan Li
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
- Henan University, Kaifeng 475004, People's Republic of China
| | - Zhenhua Yin
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Juanjuan Zhang
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Gang Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Union Medical College, Beijing 100193, People's Republic of China
| | - Lin Chen
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| |
Collapse
|
5
|
Bai B, Liu C, Zhang C, He X, Wang H, Peng W, Zheng C. Trichoderma species from plant and soil: An excellent resource for biosynthesis of terpenoids with versatile bioactivities. J Adv Res 2022:S2090-1232(22)00212-0. [PMID: 36195283 DOI: 10.1016/j.jare.2022.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/28/2022] [Accepted: 09/24/2022] [Indexed: 10/06/2022] Open
Abstract
BACKGROUND Trichoderma species are rich source of bioactive secondary metabolites. In the past decades, a series of secondary metabolites were reported from different Trichoderma fungi, among which terpenoids possessing versatile structural diversities and extensive pharmacological activities are one of the particularly important categories. AIM OF REVIEW The review aims to summarize the terpenoids isolated from Trichoderma species regarding their structural diversities, biological activities, and promising biosynthetic potentials. KEY SCIENTIFIC CONCEPTS OF REVIEW So far, a total of 253 terpenoids, including 202 sesquiterpenes, 48 diterpenes, 2 monoterpenes and 1 meroterpenoid, were isolated and identified from Trichoderma species between 1948 and 2022. Pharmacological investigations of Trichoderma terpenoids mainly focused on their antibacterial activities, antifungal activities, inhibitory activities on marine plankton species and cytotoxic activities, indicating that Trichoderma species are important microbial agents for drug discovery and environmentally friendly agrochemicals development. Intriguing chemistry and enzymology involved in the biosynthesis of Trichoderma terpenoids were also presented to facilitate further precise genome mining-guided novel structure discovery. Taken together, the abundance of novel skeletons, bioactivities and biosynthetic potentials presents new opportunities for drug and agrochemicals discovery, genome mining and enzymology exploration from Trichoderma species. The work will provide references for the profound study of terpenoids derived from Trichoderma, and facilitate further studies on Trichoderma species in the areas of chemistry, medicine, agriculture and microbiology.
Collapse
Affiliation(s)
- Bingke Bai
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Chang Liu
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Chengzhong Zhang
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Xuhui He
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Hongrui Wang
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Chengjian Zheng
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China.
| |
Collapse
|
6
|
Kanehara R, Tonouchi A, Konno K, Koshino H, Hashimoto M. Isolation of cyclohumulanoids from Daedaleopsis tricolor and their biosynthesis based on in silico simulations. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Zhang JL, Tang WL, Huang QR, Li YZ, Wei ML, Jiang LL, Liu C, Yu X, Zhu HW, Chen GZ, Zhang XX. Trichoderma: A Treasure House of Structurally Diverse Secondary Metabolites With Medicinal Importance. Front Microbiol 2021; 12:723828. [PMID: 34367122 PMCID: PMC8342961 DOI: 10.3389/fmicb.2021.723828] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Fungi play an irreplaceable role in drug discovery in the course of human history, as they possess unique abilities to synthesize diverse specialized metabolites with significant medicinal potential. Trichoderma are well-studied filamentous fungi generally observed in nature, which are widely marketed as biocontrol agents. The secondary metabolites produced by Trichoderma have gained extensive attention since they possess attractive chemical structures with remarkable biological activities. A large number of metabolites have been isolated from Trichoderma species in recent years. A previous review by Reino et al. summarized 186 compounds isolated from Trichoderma as well as their biological activities up to 2008. To update the relevant list of reviews of secondary metabolites produced from Trichoderma sp., we provide a comprehensive overview in regard to the newly described metabolites of Trichoderma from the beginning of 2009 to the end of 2020, with emphasis on their chemistry and various bioactivities. A total of 203 compounds with considerable bioactivities are included in this review, which is worth expecting for the discovery of new drug leads and agrochemicals in the foreseeable future. Moreover, new strategies for discovering secondary metabolites of Trichoderma in recent years are also discussed herein.
Collapse
Affiliation(s)
- Jian-Long Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
| | - Wen-Li Tang
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Qing-Rong Huang
- School of Life Sciences, Ludong University, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - You-Zhi Li
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Mao-Lian Wei
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Lin-Lin Jiang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
- Yantai Research Institute for Replacing Old Growth Drivers with New Ones, Yantai, China
| | - Chong Liu
- School of Life Sciences, Ludong University, Yantai, China
| | - Xin Yu
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Hong-Wei Zhu
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
- Yantai Research Institute for Replacing Old Growth Drivers with New Ones, Yantai, China
| | - Guo-Zhong Chen
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Xing-Xiao Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| |
Collapse
|
8
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
9
|
Inose K, Tanaka S, Tanaka K, Hashimoto M. Cyclohelminthol CPs: Scope and Limitations of Density Functional Theory-Based Structural Elucidation of Natural Products. J Org Chem 2021; 86:1505-1515. [DOI: 10.1021/acs.joc.0c02378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kota Inose
- Faculty of Agriculture and Bioscience, Hirosaki University, 3-Bunkyo-cho, Hirosaki 036-8561, Japan
| | - Shizuya Tanaka
- Faculty of Agriculture and Bioscience, Hirosaki University, 3-Bunkyo-cho, Hirosaki 036-8561, Japan
| | - Kazuaki Tanaka
- Faculty of Agriculture and Bioscience, Hirosaki University, 3-Bunkyo-cho, Hirosaki 036-8561, Japan
| | - Masaru Hashimoto
- Faculty of Agriculture and Bioscience, Hirosaki University, 3-Bunkyo-cho, Hirosaki 036-8561, Japan
| |
Collapse
|
10
|
Nishiyama M, Tonouchi A, Maeda H, Hashimoto M. DFT calculation–assisted stereo‐structural assignment of arundifungin. Chirality 2019; 32:17-31. [DOI: 10.1002/chir.23151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Mami Nishiyama
- Faculty of Agriculture and Life ScienceHirosaki University Hirosaki Japan
| | - Akio Tonouchi
- Faculty of Agriculture and Life ScienceHirosaki University Hirosaki Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life ScienceHirosaki University Hirosaki Japan
| | - Masaru Hashimoto
- Faculty of Agriculture and Life ScienceHirosaki University Hirosaki Japan
| |
Collapse
|
11
|
Uesugi S, Honmura Y, Nishiyama M, Kusakabe K, Tonouchi A, Yamashita T, Hashimoto M, Kimura KI. Identification of neomacrophorins isolated from Trichoderma sp. 1212-03 as proteasome inhibitors. Bioorg Med Chem 2019; 27:115161. [PMID: 31732281 DOI: 10.1016/j.bmc.2019.115161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 01/12/2023]
Abstract
Neomacrophorins I-III (1-3) and X have previously been isolated from Trichoderma sp. 1212-03. Their mode of action against cancer cells and the mechanism of biosynthesis of the characteristic [4.4.3] propellane framework in neomacrophorin X have not been reported. The isolation and characterization of neomacrophorins IV (4), V (5), and VI (6) is reported. Epoxyquinones 1, 4, and 6 potently induced apoptotic cell death in human acute promyelocytic leukemia HL60 cells, while epoxysemiquinols 2, 3, and 5 showed weak activity. This indicates that the epoxyquinone moiety is crucial for apoptosis-inducing activities of neomacrophorins. We also found that neomacrophorins inhibit proteasome in vitro, and 1, 4, and 6 induced significant accumulation of ubiquitinated proteins in HL60 cells. These activities were completely suppressed by a nucleophile, N-acetyl-l-cysteine (NAC). The analysis of reaction mechanisms using LC-MS suggested that C2' and C7' of neomacrophorins could be Michael acceptors in the reaction with NAC methyl ester (NACM). These findings indicated that the electrophilic properties of neomacrophorins are responsible for both their potent biological effects and the biosynthesis of unique [4.4.3] propellane framework in neomacrophorin X.
Collapse
Affiliation(s)
- Shota Uesugi
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Yuna Honmura
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Mami Nishiyama
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Kazuaki Kusakabe
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Akio Tonouchi
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Tetsuro Yamashita
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Masaru Hashimoto
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Ken-Ichi Kimura
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|