1
|
Tabakmakher KM, Makarieva TN, Sabutski YE, Kokoulin MS, Menshov AS, Popov RS, Guzii AG, Shubina LK, Chingizova EA, Chingizov AR, Yurchenko EA, Fedorov SN, Grebnev BB, von Amsberg G, Dyshlovoy SA, Ivanchina NV, Dmitrenok PS. Stonikacidin A, an Antimicrobial 4-Bromopyrrole Alkaloid Containing L-Idonic Acid Core from the Northwestern Pacific Marine Sponge Lissodendoryx papillosa. Mar Drugs 2024; 22:396. [PMID: 39330277 PMCID: PMC11432817 DOI: 10.3390/md22090396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Stonikacidin A (1), the first representative of a new class of 4-bromopyrrole alkaloids containing an aldonic acid core, was isolated from the marine sponge Lissodendoryx papillosa. The compound is named in honor of Prof. Valentin A. Stonik, who is one of the outstanding investigators in the field of marine natural chemistry. The structure of 1 was determined using NMR, MS analysis, and chemical correlations. The L-idonic acid core was established by the comparison of GC, NMR, MS, and optical rotation data of methyl-pentaacetyl-aldonates obtained from the hydrolysis products of 1 and standard hexoses. The L-form of the idonic acid residue in 1 was confirmed by GC analysis of pentaacetate of (S)-2-butyl ester of the hydrolysis product from 1 and compared with corresponding derivatives of L- and D-idonic acids. The biosynthetic pathway for stonikacidin A (1) was proposed. The alkaloid 1 inhibited the growth of Staphylococcus aureus and Escherichia coli test strains, as well as affected the formation of S. aureus and E. coli biofilms. Compound 1 inhibited the activity of sortase A. Molecular docking data showed that stonikacidin A (1) can bind with sortase A due to the interactions between its bromine atoms and some amino acid residues of the enzyme.
Collapse
Affiliation(s)
- Kseniya M. Tabakmakher
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Tatyana N. Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Yuri E. Sabutski
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Maxim S. Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Alexander S. Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Alla G. Guzii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Larisa K. Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Artur R. Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Sergey N. Fedorov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Boris B. Grebnev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (G.v.A.); (S.A.D.)
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sergey A. Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (G.v.A.); (S.A.D.)
| | - Natalia V. Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (K.M.T.); (Y.E.S.); (M.S.K.); (A.S.M.); (R.S.P.); (A.G.G.); (L.K.S.); (E.A.C.); (A.R.C.); (E.A.Y.); (S.N.F.); (B.B.G.); (N.V.I.); (P.S.D.)
| |
Collapse
|
2
|
Métoyer B, Renouf E, Jourdes M, Mérillon JM, Téguo PW. Isolation of Hydrolyzable Tannins from Castanea sativa Using Centrifugal Partition Chromatography. JOURNAL OF NATURAL PRODUCTS 2024; 87:652-663. [PMID: 38359463 DOI: 10.1021/acs.jnatprod.3c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Castanea sativa wood is a rich source of hydrolyzable tannins, known for their diverse bioactivities. To investigate these bioactive properties further, it is crucial to isolate and characterize hydrophilic compounds effectively. To address this issue, we developed a centrifugal partition chromatography (CPC) method and applied it to an aqueous C. sativa wood extract. We determined the partition coefficients (KD) of the six major compounds using four butanol-/water-based biphasic solvent systems. Initially, we utilized the n-butanol/propanol/water (3:1:4, v/v/v) systems for the first fractionation step. Subsequently, we employed the water/methyl tert-butyl ether/butanol/acetone (8:5:3:4, v/v/v/v) system to fractionate moderately and highly hydrophilic fractions. We calculated the KD values for major compounds of the most hydrophilic fractions using the butanol/ethanol/water (4:1:5, v/v/v) and butanol/isopropanol/water (2:1:3, v/v/v) systems. In total, we isolated 23 compounds through a combination of CPC, size exclusion chromatography, and preparative HPLC. Among these compounds, six have never been previously described. We characterized them by 1D and 2D NMR experiments and high-resolution mass spectroscopy acquisitions.
Collapse
Affiliation(s)
- Benjamin Métoyer
- Polyphénols Biotech-ADERA, Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, 33882 Villenave-d'Ornon, France
| | - Elodie Renouf
- Polyphénols Biotech-ADERA, Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, 33882 Villenave-d'Ornon, France
| | - Michael Jourdes
- Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, Université de Bordeaux, 33882 Villenave-d'Ornon, France
| | - Jean-Michel Mérillon
- Polyphénols Biotech-ADERA, Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, 33882 Villenave-d'Ornon, France
- Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, Université de Bordeaux, 33882 Villenave-d'Ornon, France
| | - Pierre Waffo Téguo
- Polyphénols Biotech-ADERA, Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, 33882 Villenave-d'Ornon, France
- Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, Université de Bordeaux, 33882 Villenave-d'Ornon, France
| |
Collapse
|
3
|
Two new C-glycosidic ellagitannins and accompanying tannins from Lawsonia inermis leaves and their cytotoxic effects. Fitoterapia 2021; 153:104925. [PMID: 33984438 DOI: 10.1016/j.fitote.2021.104925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022]
Abstract
Investigation on tannins having antitumor properties led to the isolation of two new C-glycosidic ellagitannins (1 and 2) along with seven known ellagitannins (3-9) and a related polyphenolic constituent (10) from Lawsonia inermis leaves. Our intensive HRESIMS, 1D and 2D NMR, and ECD spectroscopic studies of new tannins have shown that one (1) has a monomer structure of C-glycosidic tannin, and the other (2) has a dimeric structure of 2,3-O-hexahydroxydiphenoyl glucopyranose and a C-glycosidic tannin. Among the known compounds, one (3) is a C-glycosidic tannin that was isolated first of all from nature, five were C-glycosidic tannins, vescalagin (4), 1-O-methylvescalagin (5), castalagin (6), stachyurin (7), and casuarinin (8), and one was an O-glycosidic ellagitannin, tellimagrandin II (9). The remaining phenolic constituent from the leaves was identified as valoneic acid dilactone (10). The ellagitannins 1, and 3-9 demonstrated noticeable cytotoxicity on human oral squamous cell carcinoma cell lines (HSC-2, HSC-4, and Ca9-22), and lower effects on human oral normal cells (HGF, HPC, and HPLF). Tellimagrandin II (9) had the highest tumor-specific cytotoxicity, and also cleaved poly (ADP-ribose) polymerase 1 in HSC-2 cells. These findings showed that L. inermis ellagitannins may be a candidate for the production of anti-oral cancer materials.
Collapse
|
4
|
Response surface optimization of phenolic compounds from jabuticaba (Myrciaria cauliflora [Mart.] O.Berg) seeds: Antioxidant, antimicrobial, antihyperglycemic, antihypertensive and cytotoxic assessments. Food Chem Toxicol 2020; 142:111439. [PMID: 32450285 DOI: 10.1016/j.fct.2020.111439] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
The aim of this study was to evaluate the effects of different solvents and maximize the extraction of bioactive compounds from jabuticaba (Myrciaria cauliflora) seeds. In general, the solvent system composed of water and propanone (52:48 v/v) modified the extract polarity and increased extraction yield of bioactive compounds. The optimized extract presented antioxidant capacity measured by different chemical and biological assays. The optimized extract exerted antiproliferative and cytotoxic effects against A549 and HCT8 cells, antimicrobial and antihemolytic effects, inhibited α-amylase/α-glucosidase activities and presented in vitro antihypertensive effect. Nonetheless, the optimized extract showed no cytotoxicity in a human cell model (IMR90). Vescalagin, castalagin and ellagic acid were the major phenolic compounds in the optimized extract. Our results show that jabuticaba seed may be a potential ingredient for the development of potentially functional foods.
Collapse
|