1
|
Sonkaya Ö, Soylukan C, Pamuk Algi M, Algi F. Aza-BODIPY-based Fluorescent and Colorimetric Sensors and Probes. Curr Org Synth 2023; 20:20-60. [PMID: 35170414 DOI: 10.2174/1570179419666220216123033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/30/2021] [Accepted: 12/18/2021] [Indexed: 12/16/2022]
Abstract
Aza-boron-dipyrromethenes (Aza-BODIPYs) represent an important class of chromophores absorbing and emitting in the near-infrared (NIR) region. They have unique optical and electronic features and higher physiological and photo stability than other NIR dyes. Especially after the development of facile synthetic routes, Aza-BODIPYs have become indispensable fluors that can find various applications ranging from chemosensors, bioimaging, phototherapy, solar energy materials, photocatalysis, photon upconversion, lasers, and optoelectronics. Herein, we review Aza-BODIPY based fluorescent and colorimetric chemosensors. We show the potential and untapped toolbox of Aza-BODIPY based fluorescent and colorimetric chemosensors. Hence, we divide the fluorescent and colorimetric chemosensors and probes into five sections according to the target analytes. The first section begins with the chemosensors developed for pH. Next, we discuss Aza-BODIPY based ion sensors, including metal ions and anions. Finally, we present the chemosensors and probes concerning reactive oxygen (ROS) and nitrogen species (RNS) along with biologically relevant species in the last two sections. We believe that Aza-BODIPYs are still in their infancy, and they have a promising future for translation from the bench to real biomedical and materials science applications. After two decades of intensive research, it seems that there are many more to come in this already fertile field. Overall, we hope that future work will further expand the applications of Aza-BODIPY in many areas.
Collapse
Affiliation(s)
- Ömer Sonkaya
- Department of Chemistry, Aksaray University, TR-68100 Aksaray, Turkey
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Caner Soylukan
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
- Department of Biotechnology & ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Melek Pamuk Algi
- Department of Chemistry, Aksaray University, TR-68100 Aksaray, Turkey
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Fatih Algi
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
- Department of Biotechnology & ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| |
Collapse
|
2
|
Gut A, Ciejka J, Makuszewski J, Majewska I, Brela M, Łapok Ł. Near-Infrared fluorescent unsymmetrical aza-BODIPYs: Synthesis, photophysics and TD-DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120898. [PMID: 35077984 DOI: 10.1016/j.saa.2022.120898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
In view of the ever-growing demand for efficient NIR fluorophores for biomedical applications, we herein report the synthesis and properties of four unsymmetrical aza-BODIPYs exhibiting NIR fluorescence. Highly desirable photophysical and photochemical properties were induced in these molecules due to the presence of both strongly electron-withdrawing p-nitrophenyl rings (p-NO2Ph-) and mildly electron-donating p-methoxyphenyl rings (p-MeOPh-) within the aza-BODIPY core. In particular, upon excitation with λabs the unsymmetrical aza-BODIPYs studied exhibited NIR emission with λf ranging from 699 nm to 718 nm in toluene. The fluorescence quantum yields (Φf), depending on the substitution pattern, ranged from Φf = 0.49 to Φf = 0.22 and the fluorescence lifetimes ranged from τf = 1.90 ns to τf = 3.59 ns. Aza-BODIPY with electron-donating substituent at 3 position and electron-withdrawing substituent at 5 position was identified as cell permeable, NIR emitting fluorophore suitable for bioimaging.
Collapse
Affiliation(s)
- Arkadiusz Gut
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Justyna Ciejka
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jakub Makuszewski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Izabela Majewska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Mateusz Brela
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Łukasz Łapok
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
3
|
Zarcone SR, Yarbrough HJ, Neal MJ, Kelly JC, Kaczynski KL, Bloomfield AJ, Bowers GM, Montgomery TD, Chase DT. Synthesis and photophysical properties of nitrated aza-BODIPYs. NEW J CHEM 2022. [DOI: 10.1039/d1nj05976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of nitrated aza-BODIPYs on the 2- and 6-positions were regioselectively synthesized and their photophysical properties were examined.
Collapse
Affiliation(s)
- Samuel R. Zarcone
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA
| | - Hana J. Yarbrough
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA
| | - Martin J. Neal
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Jordan C. Kelly
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Katie L. Kaczynski
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Aaron J. Bloomfield
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Geoffrey M. Bowers
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA
| | - Thomas D. Montgomery
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Daniel T. Chase
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA
| |
Collapse
|
4
|
Lei B, Pan H, Zhang Y, Ren XK, Chen Z. An amphiphilic B,O-chelated aza-BODIPY dye: synthesis, pH-sensitivity, and aggregation behaviour in a H 2O/DMSO mixed solvent. Org Biomol Chem 2021; 19:6108-6114. [PMID: 34160530 DOI: 10.1039/d1ob00746g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel amphiphilic B,O-chelated azadipyrromethene (aza-BODIPY) dye, containing hydrophobic dodecyloxy groups and hydrophilic tetraethylene glycol (TEG) chains, was synthesized and characterized by NMR, HRMS, Vis/NIR absorption and fluorescence spectroscopy. The B,O-chelated dye 1 exhibited largely bathochromically shifted NIR absorption and fluorescence spectra in comparison with common BF2-chelated aza-BODIPY dyes. Upon gradual addition of trifluoroacetic acid (TFA) to the dye 1 solution, obvious spectral changes were observed in Vis/NIR absorption and fluorescence spectroscopy measurements. Meanwhile, the colour change of the dye 1 solution from pink to blue was noticeable by the naked eye, indicating the pH-sensitivity of dye 1. The pH-sensitivity of dye 1 under acidic conditions could be ascribed to the formation of dye species 2·H+. Furthermore, owing to the amphiphilic feature of dye 1, it self-assembled into J-type aggregates in a mixed solvent of water/DMSO (2/8, v/v). Temperature-dependent Vis/NIR spectroscopic studies revealed a cooperative aggregation process of dye 1 and a nanowire-like morphology of the nanoaggregates was observed by AFM.
Collapse
Affiliation(s)
- Bin Lei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hongfei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Yongjie Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Shamova LI, Zatsikha YV, Nemykin VN. Synthesis pathways for the preparation of the BODIPY analogues: aza-BODIPYs, BOPHYs and some other pyrrole-based acyclic chromophores. Dalton Trans 2021; 50:1569-1593. [DOI: 10.1039/d0dt03964k] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This mini-review summarizes the synthesis strategies for the preparation and post-functionalization of aza-BODIPYs, BOPHYs, “half-Pcs”, biliazines, MB-DIPYs, semihemiporphyrazines, BOIMPYs, BOPPYs, BOPYPYs, BOAHYs, and BOAPYs.
Collapse
Affiliation(s)
| | | | - Victor N. Nemykin
- Department of Chemistry
- University of Manitoba
- Winnipeg
- Canada
- Department of Chemistry
| |
Collapse
|