1
|
Tang J, Xu R, Ma H, Zhu SM, Luo FY, Zhao X, Kang YS, Gao YW, Yang Y, Li CW. Two alkenyl phenol derivatives from the fungus Pestalotiopsis clavata JSQ 12 isolated from the mushroom Lanmaoa asiatica. Nat Prod Res 2024:1-5. [PMID: 38867712 DOI: 10.1080/14786419.2024.2367012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Two new alkenyl phenol derivatives, namely pestalol F (1) and pestalol G (2), along with two known compounds, pestalachloride A (3) and pestalotiopsin J (4), were isolated from the culture of the fungus Pestalotiopsis clavata JSQ 12. The structures of these compounds were primarily elucidated by MS, NMR and specific rotation data analysises. These secondary metabolites of Pestalotiopsis clavata were reported for the first time. Compound 2 displayed interesting cytotoxic activity against MCF-7 cell line with the IC50 value of 29.16 μM, whereas compound 3 exhibited moderate activity towards A549 cell line with the IC50 value of 35.71 μM. The positive control 5-FU showed cytotoxic effects on MCF-7 and A549 cell lines with the respective IC50 values of 26.70 and 26.07 μM. Compounds 1 and 2 displayed mild antibacterial activities against Staphylococcus aureus with MIC values of 128 and 64 μg/mL (MIC of positive control, penicillin, was 0.016 μg/mL), respectively.
Collapse
Affiliation(s)
- Jing Tang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hao Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shuai-Ming Zhu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fu-Yao Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xue Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ya-Shuai Kang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan-Wei Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chang-Wei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Gaspar A, Garrido EMP, Borges F, Garrido JM. Biological and Medicinal Properties of Natural Chromones and Chromanones. ACS OMEGA 2024; 9:21706-21726. [PMID: 38799321 PMCID: PMC11112580 DOI: 10.1021/acsomega.4c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Emerging threats to human health require a concerted effort to search for new treatment therapies. One of the biggest challenges is finding medicines with few or no side effects. Natural products have historically contributed to major advances in the field of pharmacotherapy, as they offer special characteristics compared to conventional synthetic molecules. Interest in natural products is being revitalized, in a continuous search for lead structures that can be used as models for the development of new medicines by the pharmaceutical industry. Chromone and chromanones are recognized as privileged structures and useful templates for the design of diversified therapeutic molecules with potential pharmacological interest. Chromones and chromanones are widely distributed in plants and fungi, and significant biological activities, namely antioxidant, anti-inflammatory, antimicrobial, antiviral, etc., have been reported for these compounds, suggesting their potential as lead drug candidates. This review aims to update the literature published over the last 6 years (2018-2023) regarding the natural occurrence and biological activity of chromones and chromanones, highlighting the recent findings and the perspectives that they hold for future research and applications namely in health, cosmetic, and food industries.
Collapse
Affiliation(s)
- Alexandra Gaspar
- CIQUP-IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169−007 Porto, Portugal
| | | | - Fernanda Borges
- CIQUP-IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169−007 Porto, Portugal
| | | |
Collapse
|
3
|
Dubovik V, Dalinova A, Berestetskiy A. Natural ten-membered lactones: sources, structural diversity, biological activity, and intriguing future. Nat Prod Rep 2024; 41:85-112. [PMID: 37885339 DOI: 10.1039/d3np00013c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Covering: 2012 to 2022Ten-membered lactones (TMLs) are an interesting and diverse group of natural polyketides that are abundant in fungi and, to a lesser extent, in bacteria, marine organisms, and insects. TMLs are known for their ability to exhibit a wide spectrum of biological activity, including phytotoxic, cytotoxic, antifungal, antibacterial, and others. However, the random discovery of these compounds by scientific groups with various interests worldwide has resulted in patchy information about their distribution among different organisms and their biological activity. Therefore, despite more than 60 years of research history, there is still no common understanding of the natural sources of TMLs, their structural type classification, and most characteristic biological activities. The controversial nomenclature, incorrect or erroneous structure elucidation, poor identification of producing organisms, and scattered information on the biological activity of compounds - all these factors have led to the problems with dereplication and the directed search for TMLs. This review consists of two parts: the first part (Section 2) covers 104 natural TMLs, published between 2012 and 2022 (after the publishing of the previous review), and the second part (Section 3) summarizes information about 214 TMLs described during 1964-2022 and as a result highlights the main problems and trends in the study of these intriguing natural products.
Collapse
Affiliation(s)
- Vsevolod Dubovik
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| | - Anna Dalinova
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| | - Alexander Berestetskiy
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| |
Collapse
|
4
|
Yu X, Müller WEG, Frank M, Gao Y, Guo Z, Zou K, Proksch P, Liu Z. Caryophyllene-type sesquiterpenes from the endophytic fungus Pestalotiopsis lespedezae through an OSMAC approach. Front Microbiol 2024; 14:1248896. [PMID: 38274753 PMCID: PMC10808731 DOI: 10.3389/fmicb.2023.1248896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Two new caryophyllene-type sesquiterpenes pestalotiopsins U and V (1 and 2) and three known compounds pestalotiopsin B (7), pestaloporinate B (8), and pestalotiopsin C (9) were isolated by the cultivation of the endophytic fungus Pestalotiopsis lespedezae on solid rice medium, while four additional new caryophyllene pestalotiopsins W-Z (3-6) were obtained when 3.5% NaI was added to the fungal culture medium. The structures of the new compounds were determined by HRESIMS and 1D/2D nuclear magnetic resonance data. Compounds 1-9 were tested for cytotoxicity against the mouse lymphoma cell line L5178Y, but only 6 displayed significant activity with an IC50 value of 2.4 μM.
Collapse
Affiliation(s)
- Xiaoqin Yu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Werner E. G. Müller
- Institute of Physiological Chemistry, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Ying Gao
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Zhiyong Guo
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Peter Proksch
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Zhen Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
5
|
Nuansri S, Rukachaisirikul V, Muanprasat C, Phongpaichit S, Preedanon S, Sakayaroj J. Furanone, morpholinone and tetrahydrofuran derivatives from the marine-derived fungus Talaromyces sp. PSU-MF07. Nat Prod Res 2023; 37:3434-3442. [PMID: 35609143 DOI: 10.1080/14786419.2022.2079124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Three new compounds including one furanone, one morpholinone and one tetrahydrofuran together with three known compounds were isolated from the broth extract of the marine-derived fungus Talaromyces sp. PSU-MF07. The structures of the isolated compounds were determined on the basis of spectroscopic methods. The relative configuration was assigned using NOEDIFF data whereas the absolute configurations were established by Mosher's method, specific rotations and electronic circular dichroism (ECD) data. Some isolated compounds were tested for antimicrobial activity. Only known penioxalicin exhibited weak antibacterial activity against methicillin-resistant Staphylococcus aureus SK1 with an MIC value of 200 µg/mL.
Collapse
Affiliation(s)
- Sucheewin Nuansri
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Vatcharin Rukachaisirikul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand
| | - Souwalak Phongpaichit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Sita Preedanon
- National Biobank of Thailand (NBT), National Science and Technology for Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jariya Sakayaroj
- School of Science, Walailak University, Nakhonsithammarat, Thailand
| |
Collapse
|
6
|
Morehouse NJ, Clark TN, Kerr RG, Johnson JA, Gray CA. Caryophyllene Sesquiterpenes from a Chaetomium globosum Endophyte of the Canadian Medicinal Plant Empetrum nigrum. JOURNAL OF NATURAL PRODUCTS 2023; 86:1615-1619. [PMID: 37267043 DOI: 10.1021/acs.jnatprod.2c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Punctaporonins T (1) and U (2), new caryophyllene sesquiterpenes, were isolated with three known punctaporonins, A (3), B (4), and C (5), from the endophytic fungus Chaetomium globosum (TC2-041). The structures and relative configurations of punctaporonins T and U were elucidated based on a combination of HRESIMS, 1D/2D NMR spectroscopic analysis, and X-ray diffraction analysis, while their absolute configuration is presumed to be consistent with the co-isolated 3-5 on biogenetic arguments. Compound 1 showed weak inhibitory activity against both Mycobacterium tuberculosis and Staphylococcus aureus.
Collapse
Affiliation(s)
- Nicholas J Morehouse
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Trevor N Clark
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Russell G Kerr
- Nautilus Biosciences Canada Inc., 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Department of Biomedical Sciences, Atlantic Veterinary College, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - John A Johnson
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Christopher A Gray
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
- Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
7
|
Kang X, Yang W, Zheng Y, Zheng M, Xiao Y, Wang J, Zhu H, Li Q, Chen C, Zhang Y. Caryophyllene sesquiterpenoids with various ring systems from the fungus Pestalotiopsis chamaeropis. PHYTOCHEMISTRY 2023; 207:113569. [PMID: 36566821 DOI: 10.1016/j.phytochem.2022.113569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Six undescribed caryophyllene sesquiterpenoids named pestalotiopsins O-T, along with eight known analogues, were obtained from the fungus Pestalotiopsis chamaeropis. Their structures and absolute configurations were assigned by NMR spectroscopic analyses, HRESIMS, single-crystal X-ray diffraction, electronic circular dichroism (ECD) calculations, Mo2(OAc)4-induced ECD, and chemical derivatization. Pestalotiopsin P represents the first example of a caryophyllene sesquiterpenoid possessing an oxatricyclo [7.2.2.03.6]tridecane decorated with a rare bridgehead double bond, while pestalotiopsin Q has an oxatricyclic [6.3.1.01,4]dodecane skeleton with an unusual ether bridge between C-1 and C-5. These undescribed caryophyllene sesquiterpenoids were screened for their cytotoxic and anti-inflammatory activities.
Collapse
Affiliation(s)
- Xin Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wanqi Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yuyi Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Meijia Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
8
|
Akone SH, Wang H, Misse Mouelle EN, Mándi A, Kurtán T, Koliye PR, Hartmann R, Bhatia S, Yang J, Müller WEG, Lai D, Kalscheuer R, Proksch P. Prenylated cyclohexene-type meroterpenoids and sulfur-containing xanthones produced by Pseudopestalotiopsis theae. PHYTOCHEMISTRY 2022; 197:113124. [PMID: 35144154 DOI: 10.1016/j.phytochem.2022.113124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Chemical investigation of the fungal endophyte Pseudopestalotiopsis theae isolated from leaves of Caloncoba welwitschii, collected in Cameroon, resulted in two previously undescribed sulfur-containing xanthone derivatives sydoxanthones D and E, in addition to three previously undescribed monomeric diisoprenyl-cyclohexene-type meroterpenoids biscognienynes D-F and five known natural products. The structures of the undescribed compounds were unambiguously identified by their mass spectra and by extensive 1D and 2D NMR spectroscopic analysis. Mosher's reaction was performed to determine the absolute configuration of sydoxanthones D and E while TDDFT-ECD calculations were used to assign the configuration of biscognienyne D. Biscognienynes B and D showed significant cytotoxicity against the mouse lymphoma cell line L5178Y with IC50 values of 7.7 and 6.7 μM and against the human leukemic cell lines HL60, and Hal-01 with IC50 values ranging from 4.3 to 12.1 μM.
Collapse
Affiliation(s)
- Sergi Herve Akone
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University, Universitaetsstrasse 1, Geb. 26.23, Duesseldorf, 40225, Germany; Department of Chemistry, Faculty of Science, University of Douala, Douala, P.O. Box 24157, Cameroon; Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarbrücken, 66123, Germany.
| | - Hao Wang
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, No. 4 Xueyuan Road, Haikou, 571101, Hainan, China
| | - Eitel Ngoh Misse Mouelle
- Department of Chemistry, Faculty of Science, University of Douala, Douala, P.O. Box 24157, Cameroon
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, Egyetem Tér 1, P.O. Box. 400, 4002, Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Egyetem Tér 1, P.O. Box. 400, 4002, Debrecen, Hungary
| | - Pierre Roger Koliye
- Department of Chemistry, Faculty of Science, University of Douala, Douala, P.O. Box 24157, Cameroon
| | - Rudolf Hartmann
- Institute of Complex Systems: Strukturbiochemie (ICS-6), Forschungszentrum Julich, Wilhelm-Johnen-Strase, 52428, Julich, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Jing Yang
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Werner E G Müller
- Institute of Physiological Chemistry, Universitatsmedizin der Johannes Gutenberg-Universitat Mainz, 55128, Mainz, Germany
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University, Universitaetsstrasse 1, Geb. 26.23, Duesseldorf, 40225, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University, Universitaetsstrasse 1, Geb. 26.23, Duesseldorf, 40225, Germany.
| |
Collapse
|
9
|
Fungus-Derived 3-Hydroxyterphenyllin and Candidusin A Ameliorate Palmitic Acid-Induced Human Podocyte Injury via Anti-Oxidative and Anti-Apoptotic Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072109. [PMID: 35408508 PMCID: PMC9000303 DOI: 10.3390/molecules27072109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. An elevated fatty acid plasma concentration leads to podocyte injury and DN progression. This study aimed to identify and characterize cellular mechanisms of natural compounds that inhibit palmitic acid (PA)-induced human podocyte injury. By screening 355 natural compounds using a cell viability assay, 3-hydroxyterphenyllin (3-HT) and candidusin A (CDA), isolated from the marine-derived fungus Aspergillus candidus PSU-AMF169, were found to protect against PA-induced podocyte injury, with half-maximal inhibitory concentrations (IC50) of ~16 and ~18 µM, respectively. Flow cytometry revealed that 3-HT and CDA suppressed PA-induced podocyte apoptosis. Importantly, CDA significantly prevented PA-induced podocyte barrier impairment as determined by 70 kDa dextran flux. Reactive oxygen species (ROS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) direct scavenging assays indicated that both compounds exerted an anti-oxidative effect via direct free radical-scavenging activity. Moreover, 3-HT and CDA upregulated the anti-apoptotic Bcl2 protein. In conclusion, 3-HT and CDA represent fungus-derived bioactive compounds that have a novel protective effect on PA-induced human podocyte apoptosis via mechanisms involving free radical scavenging and Bcl2 upregulation.
Collapse
|
10
|
Nuansri S, Rukachaisirikul V, Rungwirain N, Kaewin S, Yimnual C, Phongpaichit S, Preedanon S, Sakayaroj J, Muanprasat C. α-Pyrone and decalin derivatives from the marine-derived fungus Trichoderma harzianum PSU-MF79. Nat Prod Res 2021; 36:5462-5469. [PMID: 34894887 DOI: 10.1080/14786419.2021.2015593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Two new compounds, one α-pyrone (trichoharzianone) and one decalin (trichoharzianin), along with eight known compounds including three decalins, two δ-lactones, two carboxylic acids and one isochroman were isolated from the marine-derived fungus Trichoderma harzianum PSU-MF79. The structures were determined by spectroscopic methods. The relative configuration of trichoharzianin was assigned based on NOEDIFF data and coupling constants whereas the absolute configurations were established by comparison of electronic circular dichroism data with those of the co-metabolites. Known (-)-massoia lactone exhibited mild antifungal activity against Cryptococcus neoformans ATCC90113 flucytosine-resistant, Candida albicans ATCC90028 and C. albicans NCPF3153 with MIC values of 128, 200 and 200 µg/mL, respectively, and weak cytotoxic activity against HCT-116 and MCF-7 cell lines with the respective IC50 values of 17 and 32 µM. In addition, it was noncytotoxic against noncancerous Vero cells with an IC50 value of >100 µM.
Collapse
Affiliation(s)
- Sucheewin Nuansri
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Vatcharin Rukachaisirikul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Narate Rungwirain
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suchada Kaewin
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, Thailand
| | - Chantapol Yimnual
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, Thailand
| | - Souwalak Phongpaichit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sita Preedanon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani, Thailand
| | - Jariya Sakayaroj
- School of Science, Walailak University, Thasala, Nakhonsithammarat, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, Thailand
| |
Collapse
|
11
|
Zhao H, Zou J, Xu W, Hu D, Guo LD, Chen JX, Chen GD, So KF, Yao XS, Gao H. Diisoprenyl-cyclohexene/ane-Type Meroterpenoids from Biscogniauxia sp. and Their Anti-inflammatory Activities. J Org Chem 2021; 86:11177-11188. [PMID: 34043349 DOI: 10.1021/acs.joc.1c00369] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A secondary metabolites investigation on Biscogniauxia sp. 71-10-1-1 was carried out, which led to the obtention of nine new diisoprenyl-cyclohexene/ane-type meroterpenoids (1-9) and two new isoprenylbenzoic acid-type meroterpeniods (10-11). The structures of these isolates were established on the basis of multispectroscopic analyses, ECD, and 13C chemical shifts calculations, and single-crystal X-ray diffraction. Among them, biscognin A (1) is the first diisoprenyl-cyclohexene-type meroterpenoid with a unique 2-isopropyl-6'-methyloctahydro-1'H-spiro[cyclopropane-1,2'-naphthalene] skeleton. Biscognienyne F (5) is the first diisoprenyl-cyclohexene-type meroterpenoid with a cyclic carbonate. The anti-inflammatory assays of the majority of compounds were evaluated, which exhibited that compounds 3 and 5 can obviously inhibit pro-inflammatory cytokines TNF-α and IL-6 productions. This is the first report for diisoprenyl-cyclohexene-type meroterpenoids with anti-inflammatory activity. Moreover, the possible biogenetic pathways of the majority of compounds (1-5) are proposed.
Collapse
Affiliation(s)
- Huan Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jian Zou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei Xu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jia-Xu Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Kwok-Fai So
- Guangdong Medical Key Laboratory of Brain Function and Diseases/Guangdong-Hongkong-Macau Institute of Central Nervous System Regeneration, Guangzhou 510632, People's Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
12
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
13
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Antibiotics from Extremophilic Micromycetes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020; 46:903-971. [PMID: 33390684 PMCID: PMC7768999 DOI: 10.1134/s1068162020060023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/03/2022]
Abstract
Extremophilic microorganisms, which are capable of functioning normally at extremely high or low temperatures, pressure, and in other environmental conditions, have been in the focus of microbiologists' attention for several decades due to the biotechnological potential of enzymes inherent in extremophiles. These enzymes (also called extremozymes) are used in the production of food and detergents and other industries. At the same time, the inhabitants of extreme econiches remained almost unexplored for a long time in terms of the chemistry of natural compounds. In recent years, the emergence of new antibiotic-resistant strains of pathogens, which affect humans and animals has become a global problem. The problem is compounded by a strong slowdown in the development of new antibiotics. In search of new active substances and scaffolds for medical chemistry, researchers turn to unexplored natural sources. In recent years, there has been a sharp increase in the number of studies on secondary metabolites produced by extremophiles. From the discovery of penicillin to the present day, micromycetes, along with actinobacteria, are one of the most productive sources of antibiotic compounds for medicine and agriculture. Many authors consider extremophilic micromycetes as a promising source of small molecules with an unusual mechanism of action or significant structural novelty. This review summarizes the latest (for 2018-2019) experimental data on antibiotic compounds, which are produced by extremophilic micromycetes with various types of adaptation. Active metabolites are classified by the type of structure and biosynthetic origin. The data on the biological activity of the isolated metabolites are summarized.
Collapse
Affiliation(s)
- A. A. Baranova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - V. A. Alferova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| | - V. A. Korshun
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| | - A. P. Tyurin
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| |
Collapse
|