1
|
Lee WCC, Wang J, Zhu Y, Zhang XP. Asymmetric Radical Bicyclization for Stereoselective Construction of Tricyclic Chromanones and Chromanes with Fused Cyclopropanes. J Am Chem Soc 2023; 145:11622-11632. [PMID: 37129381 PMCID: PMC10249947 DOI: 10.1021/jacs.3c01618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Asymmetric radical bicyclization processes have been developed via metalloradical catalysis (MRC) to stereoselectively construct chiral chromanones and chromanes bearing fused cyclopropanes. Through optimization of a versatile D2-symmetric chiral amidoporphyrin ligand platform, a Co(II)-metalloradical system can homolytically activate both diazomalonates and α-aryldiazomethanes containing different alkene functionalities under mild conditions for effective radical bicyclization, delivering cyclopropane-fused tricyclic chromanones and chromanes, respectively, in high yields with excellent control of both diastereoselectivities and enantioselectivities. Combined computational and experimental studies, including the electron paramagnetic resonance (EPR) detection and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) trapping of key radical intermediates, shed light on the working details of the underlying stepwise radical mechanisms of the Co(II)-catalyzed bicyclization processes. The two catalytic radical processes provide effective synthetic tools for stereoselective construction of valuable cyclopropane-fused chromanones and chromanes with newly generated contiguous stereogenic centers. As a specific demonstration of synthetic application, the Co(II)-catalyzed radical bicyclization has been employed as a key step for the first asymmetric total synthesis of the natural product (+)-Radulanin J.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingyi Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
2
|
Dettori T, Sanna G, Cocco A, Serreli G, Deiana M, Palmas V, Onnis V, Pilia L, Melis N, Moi D, Caria P, Secci F. Synthesis and Antiproliferative Effect of Halogenated Coumarin Derivatives. Molecules 2022; 27:molecules27248897. [PMID: 36558029 PMCID: PMC9786284 DOI: 10.3390/molecules27248897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
A series of 6- and 6,8-halocoumarin derivatives have been investigated as potential antiproliferative compounds against a panel of tumor and normal cell lines. Cytotoxic effects were determined by the MTT method. To investigate the potential molecular mechanism involved in the cytotoxic effect, apoptosis assay, cell cycle analysis, reactive oxygen species (ROS), and reduced glutathione analysis were performed. Among the screened compounds, coumarins 6,8-dibromo-2-oxo-2H-chromene-3-carbonitrile 2h and 6,8-diiodo-2-oxo-2H-chromene-3-carbonitrile 2k exhibited the most antiproliferative effect in thyroid cancer-derived cells TPC-1. The apoptosis assay showed that both 2h and 2k induced apoptosis in TPC-1 thyroid cancer cells. According to these experiments, both coumarins induced a slight increase in TPC-1 cells in the G2/M phase and a decrease in the S phase. A significant increase in ROS levels was observed in TPC-1 treated with diiodocoumarin 2k, while the dibromocoumarin 2h induced a decrease in ROS in a dose and time-dependent manner.
Collapse
Affiliation(s)
- Tinuccia Dettori
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Andrea Cocco
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Vanessa Palmas
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Luca Pilia
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, 09123 Cagliari, CA, Italy
| | - Nicola Melis
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, 09123 Cagliari, CA, Italy
| | - Davide Moi
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| | - Francesco Secci
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| |
Collapse
|
3
|
Łowicki D, Przybylski P. Tandem construction of biological relevant aliphatic 5-membered N-heterocycles. Eur J Med Chem 2022; 235:114303. [PMID: 35344904 DOI: 10.1016/j.ejmech.2022.114303] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022]
Abstract
Nature often uses cascade reactions in a highly stereocontrolled manner for assembly structurally diverse nitrogen-containing heterocyclic scaffolds, i.e. secondary metabolites, important for medicinal chemistry and pharmacy. Five-membered nitrogen-containing heterocycles as standalone rings, as well as spiro and polycyclic systems are pharmacophores of drugs approved in various therapies, i.a. antibacterial or antiviral, antifungal, anticancer, antidiabetic, as they target many key enzymes. Furthermore, a large number of pyrrolidine derivatives are currently considered as drug candidates. Cascade transformations, also known as domino or tandem reactions, offer straightforward methods to build N-heterocyclic libraries of the great structural variety desired for drawing SAR conclusions. The tandem transformations are often atom economic and time-saving because they are performed as the one-pot, so no need for purification after each 'virtual' step and the limited necessity of protective groups are characteristic for these processes. Thus, the same results as in classical multistep synthesis can be achieved at markedly lower costs and shorter time, which is in line with modern green chemistry rules. Great advantage of cascade reactions is often reflected in their high regio- and stereoselectivities, enabling the preparing of the heterocyclic compound better fitted to the expected target in cells. This review reveals the biological relevance of N-heterocyclic scaffolds based on saturated 5-membered rings since we showed a number of examples of approved drugs together with the recent biologically attractive leading structures of drug candidates. Next, novel cascade synthetic procedures, taking into account the structure of the reactants and reaction mechanisms, enabling to obtain biological-relevant heterocyclic frameworks with good yields and relatively high stereoselectivity, were reviewed and compared. The review covers the advances of designing biological active N-heterocycles mainly from 2018 to 2021, whereas the synthetic part is focused on the last 7 years.
Collapse
Affiliation(s)
- Daniel Łowicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland.
| |
Collapse
|
4
|
Kumar S, Vashisht N, Aruna, Sharma SP. One-Pot Green Synthesis of 2-Oxo-2H-chromene-3-carbonitriles Using Dual-Frequency Ultrasonication. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021090189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Yuan WC, Lei CW, Zhao JQ, Wang ZH, You Y. Organocatalytic Asymmetric Cyclopropanation of 3-Acylcoumarins with 3-Halooxindoles: Access to Spirooxindole-cyclopropa[ c]coumarin Compounds. J Org Chem 2021; 86:2534-2544. [PMID: 33423494 DOI: 10.1021/acs.joc.0c02653] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A highly diastereo- and enantioselective cyclopropanation reaction of 3-acylcoumarins with 3-halooxindoles catalyzed by an organocatalyst through a [2 + 1] Michael/intramolecular cyclization process was developed. This scenario provides a facile strategy to access spirooxindole-cyclopropa[c]coumarin compounds bearing three continuous stereocenters, including two vicinal quaternary all-carbon stereocenters with high to excellent diastereo- and enantioselectivities. The HRMS study revealed the vital importance of the ammonium ylide intermediate in the catalytic process.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Chuan-Wen Lei
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Qiu Y, Lu K, Wei B, Qian Z, He Z. P III-Mediated Intramolecular Cyclopropanation and Synthesis of Cyclopropa[ c]coumarins. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Sun JC, Wang XH, Ji CB, Peng YY, Zeng XP. Enantioselective Construction of Chiral Cyclopropa[ c]coumarins via Lewis Base-Catalyzed Cyclopropanation. J Org Chem 2020; 85:14963-14970. [PMID: 33136397 DOI: 10.1021/acs.joc.0c01782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first highly enantioselective construction of chiral cyclopropa[c]coumarins was described. Using commercially available (bis)cinchona alkaloid (DHQ)2PYR as the chiral Lewis base catalyst, together with Cs2CO3 as the achiral base, the reaction of a series of coumarin-3-carboxylate and 3-benzoyl coumarins with tert-butyl 2-bromoacetate could give rise to the corresponding cyclopropa[c]coumarins bearing three continuous chiral stereocenters in 83-93% ee and 90-97% ee, respectively. The reaction is proposed to proceed via an in situ generated ammonium ylide intermediate.
Collapse
Affiliation(s)
- Jun-Chao Sun
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xiao-Hui Wang
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Cong-Bin Ji
- Jiangxi Provincial Research of Targeting Pharmaceutical Engineering Technology, Shangrao Normal University, Shangrao, Jiangxi 334001, China
| | - Yi-Yuan Peng
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xing-Ping Zeng
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|