1
|
Atkinson KM, Smith BD. Fluorescent ratiometric supramolecular tandem assays for phosphatase and phytase enzymes. Org Biomol Chem 2024; 22:1714-1720. [PMID: 38318943 PMCID: PMC10911839 DOI: 10.1039/d3ob02014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
Ratiometric fluorescent assays have a built-in correction factor which enhances assay accuracy and reliability. We have developed fluorescent ratiometric supramolecular tandem assays for phosphatase and phytase enzymes using a mixture of three molecular components. One of the molecules is a tetra-cationic fluorescence quencher called CalixPyr which can bind and quench the polyanionic pyrene fluorophore, CMP, that emits at 430 nm. Polyphosphates can disrupt the CMP/CalixPyr complex and alter the fluorescence intensity (responsive signal). CalixPyr has no effect on the fluorescence emission of cationic pentamethine cyanine fluorophore, cCy5, which emits at 665 nm and acts as a non-responsive reference signal. The continuous ratiometric fluorescent assay for alkaline phosphatase monitored hydrolytic consumption of adenosine triphosphate (ATP). The continuous ratiometric fluorescent assay for phytase activity monitored hydrolytic consumption of phytate. With further development this latter assay may be useful for high throughput assessment of phytase activity in individual batches of fortified animal feed. It is likely that the three-molecule mixture (CMP, CalixPyr, cCy5) can become a general assay platform for other enzymes that catalyse addition/removal of phosphate groups from appropriate molecular substrates.
Collapse
Affiliation(s)
- Kirk M Atkinson
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA.
| |
Collapse
|
2
|
Kashapov R, Razuvayeva Y, Kashapova N, Ziganshina A, Salnikov V, Sapunova A, Voloshina A, Zakharova L. Emergence of Nanoscale Drug Carriers through Supramolecular Self-Assembly of RNA with Calixarene. Int J Mol Sci 2023; 24:ijms24097911. [PMID: 37175618 PMCID: PMC10178118 DOI: 10.3390/ijms24097911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Supramolecular self-assembly is a powerful tool for the development of polymolecular assemblies that can form the basis of useful nanomaterials. Given the increasing popularity of RNA therapy, the extension of this concept of self-assembly to RNA is limited. Herein, a simple method for the creation of nanosized particles through the supramolecular self-assembly of RNA with a three-dimensional macrocycle from the calixarene family was reported for the first time. This self-assembly into nanoparticles was realized using cooperative supramolecular interactions under mild conditions. The obtained nanoparticles are able to bind various hydrophobic (quercetin, oleic acid) and hydrophilic (doxorubicin) drugs, as a result of which their cytotoxic properties are enhanced. This work demonstrates that intermolecular interactions between flexible RNA and rigid calixarene is a promising route to bottom-up assembly of novel supramolecular soft matter, expanding the design possibilities of nanoscale drug carriers.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Nadezda Kashapova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Albina Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111 Kazan, Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18, Kremlyovskaya Str., 420008 Kazan, Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| |
Collapse
|
3
|
Wang K, Wang XY, Gao GJ, Wang MN, Yu YY, Xing S, Zhu B. pH-Triggered Transition from Micellar Aggregation to a Host-Guest Complex Accompanied by a Color Change. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2145-2152. [PMID: 35107017 DOI: 10.1021/acs.langmuir.1c03299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A pH-triggered transition from micellar aggregation to a host-guest complex was achieved based on the supramolecular interactions between calixpyridinium and pyrroloquinoline quinone disodium salt (PQQ-2Na) accompanied by a color change. Our design has the following three advantages: (1) a regular spherical micellar assembly is fabricated by the supramolecular interactions between calixpyridinium and PQQ-2Na at pH 6 in an aqueous solution, (2) increasing the pH can lead to a transition from micellar aggregation to a host-guest complex due to the deprotonation of calixpyridinium, and at the same time (3) increasing the pH can lead to a color change owing to the deprotonation of calixpyridinium and the complexation of deprotonated calixpyridinium with PQQ-2Na. Benefitting from the low toxicity of calixpyridinium and PQQ-2Na, this pH-induced transition from micellar aggregation to a host-guest complex was further studied as a controllable-release model.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Xiao-Yan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Guo-Jie Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Mi-Ni Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Ying-Ying Yu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
4
|
Advances in the synthesis and application of self-assembling biomaterials. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:46-62. [PMID: 34329646 DOI: 10.1016/j.pbiomolbio.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023]
Abstract
The present study scrutinized some of the crucial advancements in the synthesis and functionalisation of self-assembling biomaterials for application in biomedicine. The basic concept of self-organization was discussed along with the mechanisms and methods involved in its implementation with biomaterials. Further, several recent applications of this technology in the biological and medical domain, and the avenues for future research and development were presented. This study brought to focus the vast potential of basic and applied research involved, especially in the context of hybrids and composites, as well as the difference in pace of new developments for different types of biomolecular materials. As nanobiotechnology matures, the tools and techniques available for developing and controlling self-assembled biomaterials as well as studying their interaction with biological tissue, will grow exponentially. Presently, self-assembly remains a potent tool for the synthesis of functional biomaterials.
Collapse
|