1
|
Izquierdo-Aranda L, Adam R, Cabrero-Antonino JR. Silver Supported Nanoparticles on [Mg 4 Al-LDH] as an Efficient Catalyst for the α-Alkylation of Nitriles, Oxindoles and Other Carboxylic Acid Derivatives with Alcohols. CHEMSUSCHEM 2023:e202300818. [PMID: 37486295 DOI: 10.1002/cssc.202300818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
An efficient heterogeneous silver-catalyzed α-alkylation of nitriles and oxindoles using alcohols via borrowing hydrogen strategy has been developed for the first time. The active nanostructured material, namely [Ag/Mg4 Al-LDH], composed by silver nanoparticles (3-4 nm average particle size) homogeneously stabilized onto a [Mg4 Al-LDH] support with suitable Brønsted basic properties, constitutes a stable catalyst for the sustainable building of novel C-C bonds from alcohols and C-nucleophiles. By applying this catalyst, a broad range of α-functionalized nitriles and oxindoles has been accessed with good to excellent isolated yields and without the addition of external bases. Moreover, the novel silver nanocatalyst has also demonstrated its successful application to the cyclization of N-[2-(hydroxymethyl)phenyl]-2-phenylacetamides to afford 3-arylquinolin-2(1H)-ones, through a one-pot dehydrogenation and intramolecular α-alkylation. Control experiments, kinetic studies, and characterization data of a variety of [Ag/LDH]-type materials confirmed the silver role in the dehydrogenation and hydrogenation steps, while [Mg4 Al-LDH] matrix is able to catalyze condensation. Interestingly, these studies suggest as key point for the successful activity of [Ag/Mg4 Al-LDH], in comparison with other [Ag/LDH]-type nanocatalysts, the suitable acid-base properties of this material.
Collapse
Affiliation(s)
- Luis Izquierdo-Aranda
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, València, Spain
| | - Rosa Adam
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, València, Spain
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Jose R Cabrero-Antonino
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, València, Spain
| |
Collapse
|
2
|
Shen J, Jiang X, Wu H, Xu J, Zhu Q, Zhang P. Copper-catalyzed selective oxidation of hydrazones through C(sp 3)-H functionalization. Org Biomol Chem 2021; 19:8917-8923. [PMID: 34617555 DOI: 10.1039/d1ob01563j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A simple and mild protocol for copper-catalyzed oxidation of hydrazones at the α-position has been reported. Various substrates are compatible, providing the corresponding products in moderate to good yields. This strategy provides an efficient and convenient solution for the synthesis of carbonyl hydrazone. A free radical pathway mechanism is suggested for the transformation.
Collapse
Affiliation(s)
- Jiabin Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China. .,College of Chemistry and Chemical Engineering, Central south University, Changsha, 410083, P.R. China
| | - Haifeng Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Qing Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|