1
|
Jung E, Kraimps A, Dittmann S, Griesser T, Costafrolaz J, Mattenberger Y, Jurt S, Viollier PH, Sander P, Sievers S, Gademann K. Phenolic Substitution in Fidaxomicin: A Semisynthetic Approach to Antibiotic Activity Across Species. Chembiochem 2023; 24:e202300570. [PMID: 37728121 DOI: 10.1002/cbic.202300570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/21/2023]
Abstract
Fidaxomicin (Fdx) is a natural product antibiotic with potent activity against Clostridioides difficile and other Gram-positive bacteria such as Mycobacterium tuberculosis. Only a few Fdx derivatives have been synthesized and examined for their biological activity in the 50 years since its discovery. Fdx has a well-studied mechanism of action, namely inhibition of the bacterial RNA polymerase. Yet, the targeted organisms harbor different target protein sequences, which poses a challenge for the rational development of new semisynthetic Fdx derivatives. We introduced substituents on the two phenolic hydroxy groups of Fdx and evaluated the resulting trends in antibiotic activity against M. tuberculosis, C. difficile, and the Gram-negative model organism Caulobacter crescentus. As suggested by the target protein structures, we identified the preferable derivatisation site for each organism. The derivative ortho-methyl Fdx also exhibited activity against the Gram-negative C. crescentus wild type, a first for fidaxomicin antibiotics. These insights will guide the synthesis of next-generation fidaxomicin antibiotics.
Collapse
Affiliation(s)
- Erik Jung
- Department of Chemistry, University of Zurich, 8057, Zürich, Switzerland
| | - Anastassia Kraimps
- Department of Chemistry, University of Zurich, 8057, Zürich, Switzerland
| | - Silvia Dittmann
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Tizian Griesser
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Jordan Costafrolaz
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yves Mattenberger
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simon Jurt
- Department of Chemistry, University of Zurich, 8057, Zürich, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Karl Gademann
- Department of Chemistry, University of Zurich, 8057, Zürich, Switzerland
| |
Collapse
|
2
|
Cai J, Yuan X, Kong Y, Hu Y, Li J, Jiang S, Dong C, Ding K. Chemical approaches for the stereocontrolled synthesis of 1,2-cis-β-D-rhamnosides. Chin J Nat Med 2023; 21:886-901. [PMID: 38143103 DOI: 10.1016/s1875-5364(23)60408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 12/26/2023]
Abstract
In carbohydrate chemistry, the stereoselective synthesis of 1,2-cis-glycosides remains a formidable challenge. This complexity is comparable to the synthesis of 1,2-cis-β-D-mannosides, primarily due to the adverse anomeric and Δ-2 effects. Over the past decades, to attain β-stereoselectivity in D-rhamnosylation, researchers have devised numerous direct and indirect methodologies, including the hydrogen-bond-mediated aglycone delivery (HAD) method, the synthesis of β-D-mannoside paired with C6 deoxygenation, and the combined approach of 1,2-trans-glycosylation and C2 epimerization. This review elaborates on the advancements in β-D-rhamnosylation and its implications for the total synthesis of tiacumicin B and other physiologically relevant glycans.
Collapse
Affiliation(s)
- Juntao Cai
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Xin Yuan
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuanfang Kong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yulong Hu
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jieming Li
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shiqing Jiang
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Department of Oncology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Chunhong Dong
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Kan Ding
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
3
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Mies T, White AJP, Parsons PJ, Barrett AGM. Photolytic Studies on the Generation and Trapping of 6‐Oxomethylidenecyclohexa‐2,4‐diene‐1‐one Derivatives with Various Nucleophiles. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Thomas Mies
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane UK-London W12 0BZ England
| | - Andrew J. P. White
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane UK-London W12 0BZ England
| | - Philip J. Parsons
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane UK-London W12 0BZ England
| | - Anthony G. M. Barrett
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane UK-London W12 0BZ England
| |
Collapse
|
5
|
Tresse C, François-Heude M, Servajean V, Ravinder R, Lesieur C, Geiben L, Jeanne-Julien L, Steinmetz V, Retailleau P, Roulland E, Beau JM, Norsikian S. Total Synthesis of Tiacumicin B: Study of the Challenging β-Selective Glycosylations*. Chemistry 2021; 27:5230-5239. [PMID: 33433914 DOI: 10.1002/chem.202005102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 11/07/2022]
Abstract
We give a full account of the total synthesis of tiacumicin B (Tcn-B), a natural glycosylated macrolide with remarkable antibiotic properties. Our strategy is based on our experience with the synthesis of the tiacumicin B aglycone and on unique 1,2-cis-glycosylation steps. We used sulfoxide anomeric leaving-groups in combination with a remote 3-O-picoloyl group on the donors that allowed highly β-selective rhamnosylation and noviosylation that rely on H-bond-mediated aglycone delivery. The rhamnosylated C1-C3 fragment was anchored to the C4-C19 aglycone fragment by a Suzuki-Miyaura cross-coupling. Ring-size-selective Shiina macrolactonization provided a semiglycosylated aglycone that was engaged directly in the noviolysation step with a virtually total β-selectivity. Finally, a novel deprotection method was devised for the removal of a 2-naphthylmethyl ether on a phenol, and efficient removal of all the protecting groups provided synthetic tiacumicin B.
Collapse
Affiliation(s)
- Cédric Tresse
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Marc François-Heude
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Vincent Servajean
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Rubal Ravinder
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Clémence Lesieur
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Lucie Geiben
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Louis Jeanne-Julien
- C-Tac, CitCom, UMR 8038, Faculté de Pharmacie, CNRS-Université de Paris, avenue de l'Observatoire 4, 75006, Paris, France
| | - Vincent Steinmetz
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Emmanuel Roulland
- C-Tac, CitCom, UMR 8038, Faculté de Pharmacie, CNRS-Université de Paris, avenue de l'Observatoire 4, 75006, Paris, France
| | - Jean-Marie Beau
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Université Paris-Saclay, 91198, Gif-sur-Yvette, France.,Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, Univ. Paris-Sud and CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Stéphanie Norsikian
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|