1
|
Song SY, Zhou X, Ke Z, Xu S. Synthesis of Chiral Sulfoximines via Iridium-Catalyzed Regio- and Enantioselective C-H Borylation: A Remarkable Sidearm Effect of Ligand. Angew Chem Int Ed Engl 2023; 62:e202217130. [PMID: 36511841 DOI: 10.1002/anie.202217130] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/14/2022]
Abstract
Transition metal-catalyzed enantioselective C-H activation of prochiral sulfoximines for non-annulated products remains a formidable challenge. We herein report iridium-catalyzed enantioselective C-H borylation of N-silyl diaryl sulfoximines using a well-designed chiral bidentate boryl ligand with a bulky side arm. This method is capable of accommodating a broad range of substrates under mild reaction conditions, affording a vast array of chiral sulfoximines with high enantioselectivities. We also demonstrated the synthetic utility on a preparative-scale C-H borylation for diverse downstream transformations, including the synthesis of chiral version of bioactive molecules. Computational studies showed that the bulky side arm of the ligand confers high regio- and enantioselectivity through steric effect.
Collapse
Affiliation(s)
- Shu-Yong Song
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiaoyu Zhou
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
2
|
Yang B, Cao K, Zhao G, Yang J, Zhang J. Pd/Ming-Phos-Catalyzed Asymmetric Three-Component Arylsilylation of N-Sulfonylhydrazones: Enantioselective Synthesis of gem-Diarylmethine Silanes. J Am Chem Soc 2022; 144:15468-15474. [PMID: 35994322 DOI: 10.1021/jacs.2c07037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A Pd-catalyzed enantioselective three-component reaction of N-sulfonylhydrazones, aryl bromides, and silylboronic esters is developed, enabling the synthesis of chiral gem-diarylmethine silanes in high enantioselectivity with the use of a newly identified Ming-Phos. Compared with N-tosyl, the more easily decomposed N-mesitylsulfonyl is more suitable as the masking group of electron-rich hydrazone to improve the reaction efficiency. The reaction features a broad scope concerning both coupling partners, high enantioselectivity, and mild reaction conditions. The ready access to enantiomers and utility of this catalytic method are also presented.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Kangning Cao
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Guofeng Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
3
|
Su B, Hartwig JF. Development of Chiral Ligands for the Transition-Metal-Catalyzed Enantioselective Silylation and Borylation of C-H Bonds. Angew Chem Int Ed Engl 2022; 61:e202113343. [PMID: 34729899 PMCID: PMC9135162 DOI: 10.1002/anie.202113343] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 11/06/2022]
Abstract
Enantioselective reactions that install functional groups at the positions of unactivated C-H bonds can be envisioned to produce intermediates for the synthesis of the active ingredients in pharmaceuticals and agrochemicals directly from simple feedstocks. Among these C-H bond functionalization reactions, those that form carbon-silicon (C-Si) and carbon-boron (C-B) bonds have been pursued because the products of these reactions can be converted to those containing a wide range of functional groups and because compounds containing silicon and boron possess unique properties that can be valuable for medicinal and materials chemistry. Although the silylation and borylation of C-H bonds have undergone extensive development during the past two decades, enantioselective versions of these reactions were not known until a few years ago. In this Minireview, we present the rapid development of enantioselective silylation and borylation of C-H bonds, with an emphasis on the design and development of the types of chiral ligands needed to achieve these reactions and an intention to inspire an expansion of these types of transformations.
Collapse
Affiliation(s)
- Bo Su
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350 (P. R. China)
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
| |
Collapse
|
4
|
Su B, Hartwig JF. Development of Chiral Ligands for the Transition‐Metal‐Catalyzed Enantioselective Silylation and Borylation of C−H Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bo Su
- State Key Laboratory of Medical Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road, Jinnan District Tianjin 300350 P. R. China
| | - John F. Hartwig
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
5
|
Zou X, Li Y, Ke Z, Xu S. Chiral Bidentate Boryl Ligand-Enabled Iridium-Catalyzed Enantioselective Dual C–H Borylation of Ferrocenes: Reaction Development and Mechanistic Insights. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoliang Zou
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yinwu Li
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
6
|
Yu X, Zhang ZZ, Niu JL, Shi BF. Coordination-assisted, transition-metal-catalyzed enantioselective desymmetric C–H functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01884a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in transition-metal-catalyzed enantioselective desymmetric C–H functionalization are summarized.
Collapse
Affiliation(s)
- Xin Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuo-Zhuo Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun-Long Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
7
|
Andreola LR, Wheeler S. Importance of Favourable Non-Covalent Contacts in the Stereoselective Synthesis of Tetrasubstituted Chromanone. Org Chem Front 2022. [DOI: 10.1039/d2qo00090c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Automated transiton state (TS) structure computations for a recently reported Pd-catalysed conjugated addition of arylboronic acids to 2-substituted chromones (Chem Sci, 2020, 11, 4602) reveal unexpected conformations of the key...
Collapse
|
8
|
Hu J, Ferger M, Shi Z, Marder TB. Recent advances in asymmetric borylation by transition metal catalysis. Chem Soc Rev 2021; 50:13129-13188. [PMID: 34709239 DOI: 10.1039/d0cs00843e] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral organoboronates have played a critical role in organic chemistry and in the development of materials science and pharmaceuticals. Much effort has been devoted to exploring synthetic methodologies for the preparation of these compounds during the past few decades. Among the known methods, asymmetric catalysis has emerged as a practical and highly efficient strategy for their straightforward preparation, and recent years have witnessed remarkable advances in this respect. Approaches such as asymmetric borylative addition, asymmetric allylic borylation and stereospecific cross-coupling borylation, have been extensively explored and well established employing transition-metal catalysis with a chiral ligand. This review provides a comprehensive overview of transition metal-catalysed asymmetric borylation processes to construct carbon-boron, carbon-carbon, and other carbon-heteroatom bonds. It summarises a range of recent achievements in this area of research, with considerable attention devoted to the reaction modes and the mechanisms involved.
Collapse
Affiliation(s)
- Jiefeng Hu
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Matthias Ferger
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093 Nanjing, China.
| | - Todd B Marder
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
9
|
Song P, Hu L, Yu T, Jiao J, He Y, Xu L, Li P. Development of a Tunable Chiral Pyridine Ligand Unit for Enantioselective Iridium-Catalyzed C–H Borylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01671] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Peidong Song
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Linlin Hu
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Tao Yu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jiao Jiao
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yangqing He
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|