1
|
Teli B, Wani MM, Jan S, Bhat HR, Bhat BA. Micelle-mediated synthesis of quinoxaline, 1,4-benzoxazine and 1,4-benzothiazine scaffolds from styrenes. Org Biomol Chem 2024; 22:6593-6604. [PMID: 39086328 DOI: 10.1039/d4ob00928b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A range of heterocycles based on quinoxalines, 1,4-benzoxazines and 1,4-benzothiazines have been accessed from styrenes by reacting them with benzene-1,2-diamine, 2-aminophenol and 2-aminothiophenol respectively in micellar medium. This reaction occurring in a less explored cetylpyridinium bromide (CPB) micellar medium operates in the presence of NBS through a tandem hydrobromination-oxidation cascade, converting styrenes to phenacyl bromides. Its subsequent nucleophilic addition with aromatic 1,2-dinucleophiles and further transformations led to the formation of heterocyclic constructs. The locus of the reaction site was confirmed through NMR studies and the types of interactions between the CPB and solubilizates were established by DFT calculations.
Collapse
Affiliation(s)
- Bisma Teli
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mohmad Muzafar Wani
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shafia Jan
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
| | - Haamid Rasool Bhat
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
| | - Bilal A Bhat
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Milton JP, Milanowski A, Andersson M, Gryko D. Photochemical cyclopropanation in aqueous micellar media - experimental and theoretical studies. Chem Commun (Camb) 2024; 60:4483-4486. [PMID: 38564316 DOI: 10.1039/d4cc00828f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While in nature, reactions occur in water-based confined compartments, for a long time, water has been often regarded as an unsuitable medium for organic reactions. We have, however, found that photochemical cyclopropanation of styrenes with diazo compounds or their precursors can be performed in micellar systems. COSMO-RS studies revealed that the reactivity correlates with the predicted critical micelle concentration (CMC), with higher CMC values delivering higher yields.
Collapse
Affiliation(s)
- Joseph P Milton
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Adam Milanowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
- Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Martin Andersson
- Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia.
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
3
|
Zhu C, Yang H, Cao X, Hong Q, Xu Y, Wang K, Shen Y, Liu S, Zhang Y. Decoupling of the Confused Complex in Oxidation of 3,3',5,5'-Tetramethylbenzidine for the Reliable Chromogenic Bioassay. Anal Chem 2023; 95:16407-16417. [PMID: 37883696 DOI: 10.1021/acs.analchem.3c03998] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Regulation of the reaction pathways is a perennial theme in the field of chemistry. As a typical chromogenic substrate, 3,3',5,5'-tetramethylbenzidine (TMB) generally undertakes one-electron oxidation, but the product (TMBox1) is essentially a confused complex and is unstable, which significantly hampers the clinic chromogenic bioassays for more than 50 years. Herein, we report that sodium dodecyl sulfate (SDS)-based micelles could drive the direct two-electron oxidation of TMB to the final stable TMBox2. Rather than activation of H2O2 oxidant in the one-electron TMB oxidation by common natural peroxidase, activation of the TMB substrate by SDS micelles decoupled the thermodynamically favorable complex between TMBox2 with unreacted TMB, leading to an unusual direct two-electron oxidation pathway. Mechanism studies demonstrated that the complementary spatial and electrostatic isolation effects, caused by the confined hydrophobic cavities and negatively charged outer surfaces of SDS micelles, were crucial. Further cascading with glucose oxidase, as a proof-of-concept application, allowed glucose to be more reliably measured, even in a broader range of concentrations without any conventional strong acid termination.
Collapse
Affiliation(s)
- Caixia Zhu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 21189, China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 21189, China
| | - Xuwen Cao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 21189, China
| | - Qing Hong
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 21189, China
| | - Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 21189, China
| | - Kaiyuan Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 21189, China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 21189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 21189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 21189, China
| |
Collapse
|
4
|
Wani MM, Rashid A, Bhat BA. A micelle-mediated approach enables facile access to bridged oxabicyclo[ n.3.1]alkene scaffolds. Org Biomol Chem 2023; 21:6151-6159. [PMID: 37462511 DOI: 10.1039/d3ob00918a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Oxabicyclo[n.3.1]alkene scaffolds present in a diverse range of complex natural products have been accessed by reacting 2-cycloalkenones with 1,3-cycloalkadiones in a micellar medium. This reaction occurring in a micellar confinement environment operates through a Michael addition/enolization/oxygen addition cascade to furnish highly functionalized constructs using a sustainable organic synthesis protocol. NMR analysis confirms that the locus of the solubilizates is within the palisade and stern regions of the micellar cavity.
Collapse
Affiliation(s)
- Mohmad Muzafar Wani
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Auqib Rashid
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bilal A Bhat
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Tang C, McInnes BT. Cascade Processes with Micellar Reaction Media: Recent Advances and Future Directions. Molecules 2022; 27:molecules27175611. [PMID: 36080376 PMCID: PMC9458028 DOI: 10.3390/molecules27175611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
Reducing the use of solvents is an important aim of green chemistry. Using micelles self-assembled from amphiphilic molecules dispersed in water (considered a green solvent) has facilitated reactions of organic compounds. When performing reactions in micelles, the hydrophobic effect can considerably accelerate apparent reaction rates, as well as enhance selectivity. Here, we review micellar reaction media and their potential role in sustainable chemical production. The focus of this review is applications of engineered amphiphilic systems for reactions (surface-active ionic liquids, designer surfactants, and block copolymers) as reaction media. Micelles are a versatile platform for performing a large array of organic chemistries using water as the bulk solvent. Building on this foundation, synthetic sequences combining several reaction steps in one pot have been developed. Telescoping multiple reactions can reduce solvent waste by limiting the volume of solvents, as well as eliminating purification processes. Thus, in particular, we review recent advances in “one-pot” multistep reactions achieved using micellar reaction media with potential applications in medicinal chemistry and agrochemistry. Photocatalyzed reactions in micellar reaction media are also discussed. In addition to the use of micelles, we emphasize the process (steps to isolate the product and reuse the catalyst).
Collapse
Affiliation(s)
- Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence:
| | - Bridget T. McInnes
- Computer Science Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
6
|
Petersen H, Ballmann M, Krause N, Weberskirch R. Gold(I) NHC Catalysts Immobilized to Amphiphilic Block Copolymers: A Versatile Approach to Micellar Gold Catalysis in Water. ChemCatChem 2022. [DOI: 10.1002/cctc.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hanne Petersen
- TU Dortmund University: Technische Universitat Dortmund Fakultät für Chemie und Chem. Biologie Otto-Hahn Str. 6 44227 Dortmund GERMANY
| | - Monika Ballmann
- Technische Universität Dortmund: Technische Universitat Dortmund Fakultät für Chemie und Chem. Biologie Otto-Hahn Str. 6 44227 Dortmund GERMANY
| | - Norbert Krause
- TU Dortmund University: Technische Universitat Dortmund Fakultät für Chemie und Chem. Biologie Otto-Hahn Str. 6 44227 Dortmund GERMANY
| | - Ralf Weberskirch
- Dortmund University of Technology Fakultät Chemie und Chem. Biologie , organic chemistry Otto-Hahn-Str. 6Room: C2-04-702 44227 Dortmund GERMANY
| |
Collapse
|
7
|
Mirgorodskaya AB, Kushnazarova RA, Kuznetsov DM, Tyryshkina AA, Zakharova LY. Aggregation Behavior and Catalytic Action of Carbamate-Bearing Surfactants in Aqueous Solutions. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Adamik R, Buchholcz B, Darvas F, Sipos G, Novák Z. The Potential of Micellar Media in the Synthesis of DNA-Encoded Libraries. Chemistry 2022; 28:e202103967. [PMID: 35019168 PMCID: PMC9305553 DOI: 10.1002/chem.202103967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/17/2022]
Abstract
DNA‐encoded library (DEL) technology has become widely used in drug discovery research. The construction of DELs requires robust organic transformations that proceed in aqueous media under mild conditions. Unfortunately, the application of water as reaction medium for organic synthesis is not evident due to the generally limited solubility of organic reagents. However, the use of surfactants can offer a solution to this issue. Oil‐in‐water microemulsions formed by surfactant micelles are able to localize hydrophobic reagents inside them, resulting in high local concentrations of the organic substances in an otherwise poorly solvated environment. This review provides a conceptual and critical summary of micellar synthesis possibilities that are well suited to DEL synthesis. Existing examples of micellar DEL approaches, together with a selection of micellar organic transformations fundamentally suitable for DEL are discussed.
Collapse
Affiliation(s)
- Réka Adamik
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| | | | - Ferenc Darvas
- Innostudio Inc., Záhony u. 7, 1031, Budapest, Hungary
| | | | - Zoltán Novák
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| |
Collapse
|