1
|
Tran TV, Désiré J, Auberger N, Blériot Y. Stereoselective Synthesis of 1- C-Diethylphosphonomethyl and -difluoromethyl Iminosugars from Sugar Lactams. J Org Chem 2022; 87:7581-7585. [PMID: 35584044 DOI: 10.1021/acs.joc.2c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy allowing the straightforward synthesis of 1-C-phosphonomethyl and 1-C-phosphonodifluoromethyl iminosugars is reported. Conversion of sugar lactams to the corresponding imines with Schwartz's reagent followed by their reaction with LiCH2P(O)(OEt)2 and LiCF2P(O)(OEt)2 stereoselectively afforded the 1,2-cis and 1,2-trans glycosyl phosphonates, respectively, in modest to good yields. Application of this methodology to C-2 orthogonally protected sugar lactams paved the way to 2-acetamido- and 2-deoxy-1-C-phosphonomethyl iminosugars.
Collapse
Affiliation(s)
- Thanh Van Tran
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Jérôme Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Nicolas Auberger
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Yves Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| |
Collapse
|
2
|
Blériot Y, Auberger N, Désiré J. Sugar-Derived Amidines and Congeners: Structures, Glycosidase Inhibition and Applications. Curr Med Chem 2021; 29:1271-1292. [PMID: 34951354 DOI: 10.2174/0929867329666211222164545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
Glycosidases, the enzymes responsible for the breakdown of glycoconjugates including di-, oligo- and polysaccharides are ubiquitous through all kingdoms of life. The extreme chemical stability of the glycosidic bond combined with the catalytic rates achieved by glycosidases makes them among the most proficient of all enzymes.
Given their multitude of roles in vivo, inhibition of these enzymes is highly attractive with potential in the treatment of a vast array of pathologies ranging from lysosomal storage and diabetes to viral infections. Therefore great efforts have been invested in the last three decades to design and synthesize inhibitors of glycosidases leading to a number of drugs currently on the market. Amongst the vast array of structures that have been disclosed, sugars incorporating an amidine moiety have been the focus of many research groups around the world because of their glycosidase transition state-like structure. In this review we report and discuss the structure, the inhibition profile and the use of these molecules including related structural congeners as transition state analogs.
Collapse
Affiliation(s)
- Yves Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9. France
| | - Nicolas Auberger
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9. France
| | - Jérôme Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9. France
| |
Collapse
|
3
|
Affiliation(s)
- Alexey V. Dobrydnev
- Enamine Ltd (www.enamine.net) Chervonotkatska Street 78 Kyiv 02660 Ukraine
- Taras Shevchenko National University of Kyiv Lva Tolstoho Street 12 01033 Kyiv Ukraine
| | - José Marco‐Contelles
- Laboratory of Free Radicals IQOG, CSIC C/Juan de la Cierva, 3 28006 Madrid Spain
| |
Collapse
|
4
|
Foucart Q, Shimadate Y, Marrot J, Kato A, Désiré J, Blériot Y. Synthesis and glycosidase inhibition of conformationally locked DNJ and DMJ derivatives exploiting a 2-oxo-C-allyl iminosugar. Org Biomol Chem 2019; 17:7204-7214. [DOI: 10.1039/c9ob01402k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synthesis and glycosidase inhibition profile of a series of bicyclic analogs of DNJ and DMJ displaying a similar hydroxyl pattern and a distinct conformation is described.
Collapse
Affiliation(s)
- Quentin Foucart
- Université de Poitiers
- IC2MP
- UMR CNRS 7285
- Equipe “Synthèse Organique”
- Groupe Glycochimie
| | - Yuna Shimadate
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | - Jérôme Marrot
- Institut Lavoisier de Versailles
- UMR-CNRS 8180
- Université de Versailles
- 78035 Versailles Cedex
- France
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | - Jérôme Désiré
- Université de Poitiers
- IC2MP
- UMR CNRS 7285
- Equipe “Synthèse Organique”
- Groupe Glycochimie
| | - Yves Blériot
- Université de Poitiers
- IC2MP
- UMR CNRS 7285
- Equipe “Synthèse Organique”
- Groupe Glycochimie
| |
Collapse
|
5
|
Thompson AJ, Spears RJ, Zhu Y, Suits MDL, Williams SJ, Gilbert HJ, Davies GJ. Bacteroides thetaiotaomicron generates diverse α-mannosidase activities through subtle evolution of a distal substrate-binding motif. Acta Crystallogr D Struct Biol 2018; 74:394-404. [PMID: 29717710 PMCID: PMC5930347 DOI: 10.1107/s2059798318002942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/19/2018] [Indexed: 11/17/2022] Open
Abstract
A dominant human gut microbe, the well studied symbiont Bacteroides thetaiotaomicron (Bt), is a glyco-specialist that harbors a large repertoire of genes devoted to carbohydrate processing. Despite strong similarities among them, many of the encoded enzymes have evolved distinct substrate specificities, and through the clustering of cognate genes within operons termed polysaccharide-utilization loci (PULs) enable the fulfilment of complex biological roles. Structural analyses of two glycoside hydrolase family 92 α-mannosidases, BT3130 and BT3965, together with mechanistically relevant complexes at 1.8-2.5 Å resolution reveal conservation of the global enzyme fold and core catalytic apparatus despite different linkage specificities. Structure comparison shows that Bt differentiates the activity of these enzymes through evolution of a highly variable substrate-binding region immediately adjacent to the active site. These observations unveil a genetic/biochemical mechanism through which polysaccharide-processing bacteria can evolve new and specific biochemical activities from otherwise highly similar gene products.
Collapse
Affiliation(s)
- Andrew J. Thompson
- Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Richard J. Spears
- Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Yanping Zhu
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, England
| | - Michael D. L. Suits
- Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Harry J. Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, England
| | - Gideon J. Davies
- Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| |
Collapse
|
6
|
Posakony JJ, Ferré-D'Amaré AR. Glucosamine and glucosamine-6-phosphate derivatives: catalytic cofactor analogues for the glmS ribozyme. J Org Chem 2013; 78:4730-43. [PMID: 23578404 DOI: 10.1021/jo400192e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Two analogues of glucosamine-6-phosphate (GlcN6P, 1) and five of glucosamine (GlcN, 2) were prepared for evaluation as catalytic cofactors of the glmS ribozyme, a bacterial gene-regulatory RNA that controls cell wall biosynthesis. Glucosamine and allosamine with 3-azido substitutions were prepared by SN2 reactions of the respective 1,2,4,6-protected sugars; final acidic hydrolysis afforded the fully deprotected compounds as their TFA salts. A 6-phospho-2-aminoglucolactam (31) was prepared from glucosamine in a 13-step synthesis, which included a late-stage POCl3-phosphorylation. A simple and widely applicable 2-step procedure with the triethylsilyl (TES) protecting group was developed to selectively expose the 6-OH group in N-protected glucosamine analogues, which provided another route to chemical phosphorylation. Mitsunobu chemistry afforded 6-cyano (35) and 6-azido (36) analogues of GlcN-(Cbz), and the selectivity for the 6-position was confirmed by NMR (COSY, HMBC, HMQC) experiments. Compound 36 was converted to the fully deprotected 6-azido-GlcN (37) and 2,6-diaminoglucose (38) analogues. A 2-hydroxylamino glucose (42) analogue was prepared via an oxaziridine (41). Enzymatic phosphorylation of 42 and chemical phosphorylation of its 6-OH precursor (43) were possible, but 42 and the 6-phospho product (44) were unstable under neutral or basic conditions. Chemical phosphorylation of the previously described 2-guanidinyl-glucose (46) afforded its 6-phospho analogue (49) after final deprotection.
Collapse
Affiliation(s)
- Jeffrey J Posakony
- National Heart, Lung, and Blood Institute, 50 South Drive, MSC 8012, Bethesda, Maryland 20892-8012, USA.
| | | |
Collapse
|
7
|
Synthesis and biological activity of bi/tricyclic azasugars fused thiazolidin-4-one and thiazinan-4-one by microwave-assisted tandem Staudinger/aza-Wittig/cyclization. Bioorg Med Chem Lett 2012; 22:2712-6. [DOI: 10.1016/j.bmcl.2012.02.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/20/2012] [Accepted: 02/29/2012] [Indexed: 11/18/2022]
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
9
|
Zhu Y, Suits MDL, Thompson AJ, Chavan S, Dinev Z, Dumon C, Smith N, Moremen KW, Xiang Y, Siriwardena A, Williams SJ, Gilbert HJ, Davies GJ. Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. Nat Chem Biol 2009; 6:125-32. [PMID: 20081828 DOI: 10.1038/nchembio.278] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 10/30/2009] [Indexed: 11/09/2022]
Abstract
Colonic bacteria, exemplified by Bacteroides thetaiotaomicron, play a key role in maintaining human health by harnessing large families of glycoside hydrolases (GHs) to exploit dietary polysaccharides and host glycans as nutrients. Such GH family expansion is exemplified by the 23 family GH92 glycosidases encoded by the B. thetaiotaomicron genome. Here we show that these are alpha-mannosidases that act via a single displacement mechanism to utilize host N-glycans. The three-dimensional structure of two GH92 mannosidases defines a family of two-domain proteins in which the catalytic center is located at the domain interface, providing acid (glutamate) and base (aspartate) assistance to hydrolysis in a Ca(2+)-dependent manner. The three-dimensional structures of the GH92s in complex with inhibitors provide insight into the specificity, mechanism and conformational itinerary of catalysis. Ca(2+) plays a key catalytic role in helping distort the mannoside away from its ground-state (4)C(1) chair conformation toward the transition state.
Collapse
Affiliation(s)
- Yanping Zhu
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bakherad M, Bahramian B, Nasr-Isfahani H, Keivanloo A, Doostmohammadi N. Polystyrene-supported palladium(II) ethylenediamine complex: A highly active and recyclable catalyst for the synthesis of 2-benzylimidazo[2,1-b]pyridines through heteroannulation of acetylenic compounds. J Heterocycl Chem 2009. [DOI: 10.1002/jhet.16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Bakherad M, Nasr-Isfahani H, Keivanloo A, Doostmohammadi N. Pd–Cu catalyzed heterocyclization during Sonogashira coupling: synthesis of 2-benzylimidazo[1,2-a]pyridine. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.03.141] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Pabba J, Vasella A. Probing the Interaction of the Hydroxy Group at C(4) of Lactone-Type Inhibitors withβ-Glucosidases andβ-Galactosidases. Helv Chim Acta 2006. [DOI: 10.1002/hlca.200690191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Pabba J, Rempel B, Withers S, Vasella A. Synthesis of Glycaro-1,5-lactams and Tetrahydrotetrazolopyridine-5-carboxylates: Inhibitors ofβ-D-Glucuronidase andα-L-Iduronidase. Helv Chim Acta 2006. [DOI: 10.1002/hlca.200690066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Shanmugasundaram B, Vasella A. Synthesis of NewC(2)-Substitutedgluco-Configured Tetrahydroimidazopyridines and Their Evaluation as Glucosidase Inhibitors. Helv Chim Acta 2005. [DOI: 10.1002/hlca.200590199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
|