2
|
Cleveland M, Lafond M, Xia FR, Chung R, Mulyk P, Hein JE, Brumer H. Two Fusarium copper radical oxidases with high activity on aryl alcohols. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:138. [PMID: 34134727 PMCID: PMC8207647 DOI: 10.1186/s13068-021-01984-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Biomass valorization has been suggested as a sustainable alternative to petroleum-based energy and commodities. In this context, the copper radical oxidases (CROs) from Auxiliary Activity Family 5/Subfamily 2 (AA5_2) are attractive biocatalysts for the selective oxidation of primary alcohols to aldehydes. Originally defined by the archetypal galactose 6-oxidase from Fusarium graminearum, fungal AA5_2 members have recently been shown to comprise a wide range of specificities for aromatic, aliphatic and furan-based alcohols. This suggests a broader substrate scope of native CROs for applications. However, only 10% of the annotated AA5_2 members have been characterized to date. RESULTS Here, we define two homologues from the filamentous fungi Fusarium graminearum and F. oxysporum as predominant aryl alcohol oxidases (AAOs) through recombinant production in Pichia pastoris, detailed kinetic characterization, and enzyme product analysis. Despite possessing generally similar active-site architectures to the archetypal FgrGalOx, FgrAAO and FoxAAO have weak activity on carbohydrates, but instead efficiently oxidize specific aryl alcohols. Notably, both FgrAAO and FoxAAO oxidize hydroxymethyl furfural (HMF) directly to 5-formyl-2-furoic acid (FFCA), and desymmetrize the bioproduct glycerol to the uncommon L-isomer of glyceraldehyde. CONCLUSIONS This work expands understanding of the catalytic diversity of CRO from AA5_2 to include unique representatives from Fusarium species that depart from the well-known galactose 6-oxidase activity of this family. Detailed enzymological analysis highlights the potential biotechnological applications of these orthologs in the production of renewable plastic polymer precursors and other chemicals.
Collapse
Affiliation(s)
- Maria Cleveland
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Mickael Lafond
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Fan Roderick Xia
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Ryan Chung
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Paul Mulyk
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Jason E Hein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Department of Botany, University of British Columbia, 3200 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
3
|
Wood A, Prichard KL, Clarke Z, Houston TA, Fleet GWJ, Simone MI. Synthetic Pathways to 3,4,5-Trihydroxypiperidines from the Chiral Pool. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800943] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Adam Wood
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| | - Kate L. Prichard
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| | - Zane Clarke
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
- Department of Chemistry; Juniata College; PA16652-2196 Huntingdon Pennsylvania USA
| | - Todd A. Houston
- Institute for Glycomics; Griffith University (Gold Coast); 4215 Southport QLD Australia
| | | | - Michela I. Simone
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| |
Collapse
|
4
|
Shi Z, Sun L, Li C. Solvent Polarity-Controlled Selective Synthesis of Methyl Pyranoside and Furanoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3287-3292. [PMID: 24646173 DOI: 10.1021/jf500144b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A selective synthesis of methyl d-glucopyranoside or furanoside has been developed using 2,4,6-trichloro-1,3,5-triazine (TCT)-activated DMSO and d-glucose in methanol. At higher concentrations of DMSO, only pyranoside was formed and at lower concentrations of DMSO, only furanoside was formed. This method was also successfully applied to other sugars. In terms of reaction rates, selectivities, and yields, this method is better than most of the currently used methods.
Collapse
Affiliation(s)
- Zhizhong Shi
- Department of Chemistry, School of Science, Tianjin University , Tianjin 300072, People's Republic of China
| | - Lili Sun
- Department of Chemistry, School of Science, Tianjin University , Tianjin 300072, People's Republic of China
| | - Chunbao Li
- Department of Chemistry, School of Science, Tianjin University , Tianjin 300072, People's Republic of China
| |
Collapse
|