1
|
Ishiwata A, Zhong X, Tanaka K, Ito Y, Ding F. ZnI 2-Mediated cis-Glycosylations of Various Constrained Glycosyl Donors: Recent Advances in cis-Selective Glycosylations. Molecules 2024; 29:4710. [PMID: 39407638 PMCID: PMC11477539 DOI: 10.3390/molecules29194710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
An efficient and versatile glycosylation methodology is crucial for the systematic synthesis of oligosaccharides and glycoconjugates. A direct intermolecular and an indirect intramolecular methodology have been developed, and the former can be applied to the synthesis of medium-to-long-chain glycans like that of nucleotides and peptides. The development of a generally applicable approach for the stereoselective construction of glycosidic bonds remains a major challenge, especially for the synthesis of 1,2-cis glycosides such as β-mannosides, β-L-rhamnosides, and β-D-arabinofuranosides with equatorial glycosidic bonds as well as α-D-glucosides with axial ones. This review introduces the direct formation of cis-glycosides using ZnI2-mediated cis-glycosylations of various constrained glycosyl donors, as well as the recent advances in the development of stereoselective cis-glycosylations.
Collapse
Affiliation(s)
- Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
| | - Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Medical College, Shaoguan University, Shaoguan 512026, China
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
2
|
Yang J, Wei S, Zhao J, Zeng W, Shao H, Ma X. An environmentally benign protocol for the synthesis of sugar 1,2-orthoesters in poly(ethylene glycol) dimethyl ether (DMPE). Carbohydr Res 2023; 534:108902. [PMID: 38006705 DOI: 10.1016/j.carres.2023.108902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 11/27/2023]
Abstract
An environmentally benign procedure has been developed for the synthesis of sugar orthoesters using anhydrous sodium acetate in poly (ethylene glycol)dimethyl ether (DMPE). Various sugar orthoesers were prepared without using volatile organic solvent and quaternary ammonium salt. The sugar orthoesters were obtained in good to excellent yields.
Collapse
Affiliation(s)
- Jian Yang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shanqiao Wei
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinzhong Zhao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wei Zeng
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
3
|
Chemical synthesis of polysaccharides. Curr Opin Chem Biol 2022; 69:102154. [DOI: 10.1016/j.cbpa.2022.102154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022]
|
4
|
Abronina PI, Podvalnyy NM, Kononov LO. The use of silyl groups in the synthesis of arabinofuranosides. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
6
|
Holzheimer M, Buter J, Minnaard AJ. Chemical Synthesis of Cell Wall Constituents of Mycobacterium tuberculosis. Chem Rev 2021; 121:9554-9643. [PMID: 34190544 PMCID: PMC8361437 DOI: 10.1021/acs.chemrev.1c00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The pathogen Mycobacterium tuberculosis (Mtb), causing
tuberculosis disease, features an extraordinary
thick cell envelope, rich in Mtb-specific lipids,
glycolipids, and glycans. These cell wall components are often directly
involved in host–pathogen interaction and recognition, intracellular
survival, and virulence. For decades, these mycobacterial natural
products have been of great interest for immunology and synthetic
chemistry alike, due to their complex molecular structure and the
biological functions arising from it. The synthesis of many of these
constituents has been achieved and aided the elucidation of their
function by utilizing the synthetic material to study Mtb immunology. This review summarizes the synthetic efforts of a quarter
century of total synthesis and highlights how the synthesis layed
the foundation for immunological studies as well as drove the field
of organic synthesis and catalysis to efficiently access these complex
natural products.
Collapse
Affiliation(s)
- Mira Holzheimer
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jeffrey Buter
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Cornil J, Hu Z, Bouchet M, Mulard LA. Multigram synthesis of an orthogonally-protected pentasaccharide for use as a glycan precursor in a Shigella flexneri 3a conjugate vaccine: application to a ready-for-conjugation decasaccharide. Org Chem Front 2021. [DOI: 10.1039/d1qo00761k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fine-tuned catalytic processes facilitating regio- and stereoselective conversions for the large-scale synthesis of a pentasaccharide and its oligomerization into ready-for-conjugation haptens.
Collapse
Affiliation(s)
- Johan Cornil
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
| | - Zhaoyu Hu
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
| | - Marion Bouchet
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
| | - Laurence A. Mulard
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
| |
Collapse
|
8
|
Zhu Q, Shen Z, Chiodo F, Nicolardi S, Molinaro A, Silipo A, Yu B. Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus. Nat Commun 2020; 11:4142. [PMID: 32811831 PMCID: PMC7434892 DOI: 10.1038/s41467-020-17992-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Glycans are involved in various life processes and represent critical targets of biomedical developments. Nevertheless, the accessibility to long glycans with precise structures remains challenging. Here we report on the synthesis of glycans consisting of [→4)-α-Rha-(1 → 3)-β-Man-(1 → ] repeating unit, which are relevant to the O-antigen of Bacteroides vulgatus, a common component of gut microbiota. The optimal combination of assembly strategy, protecting group arrangement, and glycosylation reaction has enabled us to synthesize up to a 128-mer glycan. The synthetic glycans are accurately characterized by advanced NMR and MS approaches, the 3D structures are defined, and their potent binding activity with human DC-SIGN, a receptor associated with the gut lymphoid tissue, is disclosed.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhengnan Shen
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai, 201210, China
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, De Boelelaan 1108, 1081HZ, Amsterdam, The Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy.
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
9
|
Zhang Y, Chen Z, Huang Y, He S, Yang X, Wu Z, Wang X, Xiao G. Modular Synthesis of Nona-Decasaccharide Motif from Psidium guajava Polysaccharides: Orthogonal One-Pot Glycosylation Strategy. Angew Chem Int Ed Engl 2020; 59:7576-7584. [PMID: 32086860 DOI: 10.1002/anie.202000992] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 11/10/2022]
Abstract
The synthesis of long, branched, and complex carbohydrate sequences remains a challenging task in chemical synthesis. Reported here is an efficient and modular one-pot synthesis of a nona-decasaccharide and shorter sequences from Psidium guajava polysaccharides, which have the potent α-glucosidase inhibitory activity. The synthetic strategy features: 1) several one-pot glycosylation reactions on the basis of N-phenyltrifluoroacetimidate (PTFAI) and Yu glycosylation to streamline the chemical synthesis of oligosaccharides, 2) the successful and efficient assembly sequences (first O3', second O5', final O2') toward the challenging 2,3,5-branched Araf motif, 3) the stereoselective 1,2-cis-glucosylation by reagent control, and 4) the convergent [6+6+7] one-pot coupling reaction for the final assembly of the target nona-decasaccharide. This orthogonal one-pot glycosylation strategy can streamline the chemical synthesis of long, branched, and complicated carbohydrate chains.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,Department of Chemistry, Kunming University, 2 Puxing Road, Kunming, 650214, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,Department of Chemistry, Kunming University, 2 Puxing Road, Kunming, 650214, China
| | - Shaojun He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Zhibing Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming, 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
10
|
Zhang Y, Chen Z, Huang Y, He S, Yang X, Wu Z, Wang X, Xiao G. Modular Synthesis of Nona‐Decasaccharide Motif from
Psidium guajava
Polysaccharides: Orthogonal One‐Pot Glycosylation Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- Department of ChemistryKunming University 2 Puxing Road Kunming 650214 China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- Department of ChemistryKunming University 2 Puxing Road Kunming 650214 China
| | - Shaojun He
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Zhibing Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xiufang Wang
- Department of ChemistryKunming University 2 Puxing Road Kunming 650214 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
11
|
Pan D, Zhang L, Hua Q, Yang Y. Highly convergent synthesis of a β-mannuronic acid alginate hexadecasaccharide. Org Biomol Chem 2019; 17:6174-6177. [PMID: 31168536 DOI: 10.1039/c9ob01254k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution-phase synthesis of poly-β-mannuronic acids still remains unexplored. We report the first synthesis of a β-mannuronic acid alginate hexadecasaccharide representing the longest synthetic polymannuronic acid so far. The highly convergent synthetic approach provides a new avenue to access poly-β-mannuronic acids that can enable the biological evaluation of poly-β-mannuronic acids as potential therapeutics and vaccines.
Collapse
Affiliation(s)
- Dingyi Pan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | | | | | | |
Collapse
|
12
|
Han L, Wang L, Guo Z. An extensive review of studies on mycobacterium cell wall polysaccharide-related oligosaccharides – part II: Synthetic studies on complex arabinofuranosyl oligosaccharides carrying other functional motifs and related derivatives and analogs. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1630840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji′nan, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji′nan, China
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Chang Y, Meng X, Li Y, Liang J, Li T, Meng D, Zhu T, Yu P. Synthesis and immunogenicity of the Mycobacterium tuberculosis arabinomannan-CRM197 conjugate. MEDCHEMCOMM 2019; 10:543-553. [PMID: 31057734 DOI: 10.1039/c8md00546j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/15/2019] [Indexed: 01/06/2023]
Abstract
Lipoarabinomannan (LAM) is a major structural surface component of Mycobacterium tuberculosis. This study describes the synthesis of the well-defined lipoarabinomannan (LAM) specific dodecasaccharide-protein conjugate and immunological studies. Arabinomannan (AM) dodecasaccharide has been efficiently synthesized and covalently conjugated to carrier proteins, including cross reactive mutant (CRM197) diphtheria toxoid and bovine serum albumin (BSA) for novel neoglycoconjugates, creating a potent T-dependent conjugate vaccine. Preliminary mice immunization studies on the neoglycoconjugate revealed that it could give rise to a strong IgG antibody titer in mice at 4.0 μg dose with an aluminum phosphate adjuvant. AM-CRM197 shows potential as an excellent candidate for a new carbohydrate-based vaccine that would be capable of eliciting a protective immune response against tuberculosis.
Collapse
Affiliation(s)
- Yunsong Chang
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Xin Meng
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Yaxin Li
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Jianmei Liang
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Tingshen Li
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety , College of Food Engineering and Biotechnology , Tianjin University of Science & Technology , Tianjin , 300457 , PR China
| | - Tao Zhu
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562.,CanSino Biologics Inc. , Tianjin 300457 , PR China
| | - Peng Yu
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| |
Collapse
|
14
|
Dubbu S, Bardhan A, Chennaiah A, Vankar YD. A Cascade of Prins Reaction and Pinacol-Type Rearrangement: Access to 2,3-Dideoxy-3C-Formyl β-C
-Aryl/Alkyl Furanosides and 2-Deoxy-2C-Branched β-C
-Aryl Furanoside. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sateesh Dubbu
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Anirban Bardhan
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Ande Chennaiah
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Yashwant D. Vankar
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| |
Collapse
|
15
|
Dhakal B, Crich D. Synthesis and Stereocontrolled Equatorially Selective Glycosylation Reactions of a Pseudaminic Acid Donor: Importance of the Side-Chain Conformation and Regioselective Reduction of Azide Protecting Groups. J Am Chem Soc 2018; 140:15008-15015. [PMID: 30351022 DOI: 10.1021/jacs.8b09654] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pseudaminic acid is an amino deoxy sialic acid whose glycosides are essential components of many pathogenic Gram-negative bacterial cell walls including those from Pseudomonas aeruginosa, Vibrio cholerae, Campylobacter jejuni, Campylobacter coli, Vibrio vulnificus, and Pseudoalteromonas distincta. The study of pseudaminic acid glycosides is however hampered by poor availability from nature and the paucity of good synthetic methods and limited to no understanding of the factors controlling stereoselectivity. Conformational analysis of the side chains of various stereoisomeric sialic acids suggested that the side chain of pseudaminic acid would take up the most electron-withdrawing trans, gauche-conformation, as opposed to the gauche, gauche conformation of N-acetyl neuraminic acid and the gauche, trans-conformtion of 7- epi N-acetyl neuraminic acid, leading to the prediction of high equatorial selectivity. This prediction is borne out by the synthesis of a suitably protected pseudaminic acid donor from N-acetyl neuraminic acid in 20 steps and 5% overall yield and by the exquisite equatorial selectivity it displays in coupling reactions with typical glycosyl acceptors. The selectivity of the glycosylation reactions is further buttressed by the development and implementation of conditions for the regioselective release of the two amines from the corresponding azides, such as required for the preparation of the lipopolysaccharides. These findings open the way to the synthesis and study of pseudaminic acid-based bacterial lipopolysaccharides and, importantly in the broader context of glycosylation reactions in general, underline the significant role played by side-chain conformation in the control of reactivity and selectivity.
Collapse
Affiliation(s)
- Bibek Dhakal
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
16
|
|
17
|
Colombo C, Pitirollo O, Lay L. Recent Advances in the Synthesis of Glycoconjugates for Vaccine Development. Molecules 2018; 23:molecules23071712. [PMID: 30011851 PMCID: PMC6099631 DOI: 10.3390/molecules23071712] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
During the last decade there has been a growing interest in glycoimmunology, a relatively new research field dealing with the specific interactions of carbohydrates with the immune system. Pathogens’ cell surfaces are covered by a thick layer of oligo- and polysaccharides that are crucial virulence factors, as they mediate receptors binding on host cells for initial adhesion and organism invasion. Since in most cases these saccharide structures are uniquely exposed on the pathogen surface, they represent attractive targets for vaccine design. Polysaccharides isolated from cell walls of microorganisms and chemically conjugated to immunogenic proteins have been used as antigens for vaccine development for a range of infectious diseases. However, several challenges are associated with carbohydrate antigens purified from natural sources, such as their difficult characterization and heterogeneous composition. Consequently, glycoconjugates with chemically well-defined structures, that are able to confer highly reproducible biological properties and a better safety profile, are at the forefront of vaccine development. Following on from our previous review on the subject, in the present account we specifically focus on the most recent advances in the synthesis and preliminary immunological evaluation of next generation glycoconjugate vaccines designed to target bacterial and fungal infections that have been reported in the literature since 2011.
Collapse
Affiliation(s)
- Cinzia Colombo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Olimpia Pitirollo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Luigi Lay
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
18
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
19
|
Abronina PI, Zinin AI, Romashin DA, Tereshina VV, Chizhov AO, Kononov LO. Application of a Janus aglycon with dual function in benzyl-free synthesis of spacer-armed oligosaccharide fragments of polysaccharides from rhizobacterium Azospirillum brasilense sp7. Carbohydr Res 2018; 464:28-43. [PMID: 29803733 DOI: 10.1016/j.carres.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 11/16/2022]
Abstract
Both protective and pre-spacer features of 4-(2-chloroethoxy)phenyl (CEP) aglycon, which belong to the class of Janus aglycons, were engaged in a benzyl-free synthesis of oligosaccharide fragments of polysaccharides from rhizobacterium Azospirillum brasilense sp7. Introduction of α-1,4-linked L-fucose residue was performed using 3,4-di-O-benzoyl-2-O-triisopropylsilyl-α-L-fucopyranosyl N-phenyltrifluoroacetimidate in excellent stereoselectivity and high yields. The obtained deprotected di-, tri- and tetrasaccharides contain 4-(2-azidoethoxy)phenyl (AEP) spacer aglycon, which allows straightforward preparation of neoglycoconjugates that will be used for the study of the role of lipopolysaccharide of rhizobacterium A. brasilense sp7 in plant-microbe symbiosis. The intermediate protected oligosaccharide building blocks with cleavable CEP/AEP aglycons have a strong potential for further application in the synthesis of more complex oligosaccharides.
Collapse
Affiliation(s)
- Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation.
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Denis A Romashin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Valeria V Tereshina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation.
| |
Collapse
|
20
|
Delbianco M, Kononov A, Poveda A, Yu Y, Diercks T, Jiménez-Barbero J, Seeberger PH. Well-Defined Oligo- and Polysaccharides as Ideal Probes for Structural Studies. J Am Chem Soc 2018; 140:5421-5426. [PMID: 29624385 DOI: 10.1021/jacs.8b00254] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polysaccharides are the most abundant organic materials in nature, yet correlations between their three-dimensional structure and macroscopic properties have not been established. Automated glycan assembly enables the preparation of well-defined oligo- and polysaccharides resembling natural as well as unnatural structures. These synthetic glycans are ideal probes for the fundamental study of polysaccharides. According to molecular modeling simulations and NMR analysis, different classes of polysaccharides adopt fundamentally different conformations that are drastically altered by single-site substitutions. Larger synthetic polysaccharides are obtained via a "LEGO"-like approach as a first step toward the production of tailor-made carbohydrate-based materials.
Collapse
Affiliation(s)
- Martina Delbianco
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Andrew Kononov
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Ana Poveda
- CIC bioGUNE , Bizkaia Science and Technology Park bld 801 A , 48160 Derio , Bizkaia , Spain
| | - Yang Yu
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Tammo Diercks
- CIC bioGUNE , Bizkaia Science and Technology Park bld 801 A , 48160 Derio , Bizkaia , Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Science and Technology Park bld 801 A , 48160 Derio , Bizkaia , Spain
| | - Peter H Seeberger
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| |
Collapse
|
21
|
Li W, Yu B. Gold-catalyzed glycosylation in the synthesis of complex carbohydrate-containing natural products. Chem Soc Rev 2018; 47:7954-7984. [DOI: 10.1039/c8cs00209f] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold(i)- and gold(iii)-catalyzed glycosylation reactions and their application in the synthesis of natural glycoconjugates are reviewed.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
22
|
Panova MV, Podvalnyy NM, Okun EL, Abronina PI, Chizhov AO, Kononov LO. Arabinofuranose 1,2,5-orthobenzoate as a single precursor of linear α(1 → 5)-linked oligoarabinofuranosides. Carbohydr Res 2017; 456:35-44. [PMID: 29272780 DOI: 10.1016/j.carres.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 01/21/2023]
Abstract
Selectively protected mono-, di- and trisaccharide thioglycoside building blocks with unprotected primary hydroxy group at the non-reducing end, available in only one step from 3-O-benzoyl β-d-arabinofuranose 1,2,5-orthobenzoate, were used in the synthesis of linear α(1 → 5)-linked oligoarabinofuranosides up to octasaccharide. The obtained oligosaccharides contain 4-(2-chloroethoxy)phenyl (CEP) or 4-(2-azidoethoxy)phenyl (AEP) pre-spacer aglycons that allow preparation of neoglycoconjugates.
Collapse
Affiliation(s)
- Maria V Panova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation; The Higher Chemical College of the Russian Academy of Sciences, Miusskaya Pl. 9, 125047 Moscow, Russian Federation
| | - Nikita M Podvalnyy
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation
| | - Eugene L Okun
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation
| | - Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
23
|
Wang L, Feng S, Wang S, Li H, Guo Z, Gu G. Synthesis and Immunological Comparison of Differently Linked Lipoarabinomannan Oligosaccharide–Monophosphoryl Lipid A Conjugates as Antituberculosis Vaccines. J Org Chem 2017; 82:12085-12096. [DOI: 10.1021/acs.joc.7b01817] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lizhen Wang
- National
Glycoengineering Research Center and Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China
| | - Shaojie Feng
- National
Glycoengineering Research Center and Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China
| | - Subo Wang
- National
Glycoengineering Research Center and Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China
| | - Hui Li
- National
Glycoengineering Research Center and Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China
| | - Zhongwu Guo
- Department
of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Guofeng Gu
- National
Glycoengineering Research Center and Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China
| |
Collapse
|
24
|
Abstract
31+30+31: Ye and colleagues have synthesized a branched 92-mer of arabinogalactan-a major component of the cell wall of M. tuberculosis-by linking a linear oligogalactan 30-mer with two d-arabinofuranose 31-mers. Their approach capitalizes on sequential, one-pot glycosylation reactions that result in a rapid increase in molecular complexity and efficient synthesis of a branched oligosaccharide.
Collapse
Affiliation(s)
- Maciej A Walczak
- Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, CO, 80309, USA
| | - Feng Zhu
- Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, CO, 80309, USA
| |
Collapse
|
25
|
Synthesis of synthetic mannan backbone polysaccharides found on the surface of Mycobacterium tuberculosis as a vaccine adjuvant and their immunological properties. Carbohydr Polym 2017; 175:746-755. [PMID: 28917925 DOI: 10.1016/j.carbpol.2017.07.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/05/2017] [Accepted: 07/15/2017] [Indexed: 12/30/2022]
Abstract
Surface components of Mycobacterium tuberculosis (Mtb) play crucial roles in modulating host immune responses. Thorough understandings of immunological properties of the Mtb's surface components are essential for the development of tuberculosis treatment and prevention. Unfortunately, the accessibility to the molecules on the surface of Mtb is limited by the structural complexity due to their various macromolecular nature and the hazard of culturing Mtb. In this study, we reveal a practical synthesis of lipomannan (LM) backbone polysaccharides - the core glycans found on Mtb's surface. A rapid synthetic approach based on a controlled polymerization was developed for the chemical synthesis of mannopyranans, the core structure of LM. The size of the LM glycans can be controlled by using specific monomer concentrations in addition to stereo- and regioselectivity derived from the versatile tricyclic orthoester mannose monomer. The immunological properties of the synthesized mannopyranans were investigated and their adjuvant potential was revealed. The adjuvanticity mechanism of the synthetic mannopyranans appears to involve the NF-κB and inflammasome pathways.
Collapse
|
26
|
Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units. Nat Commun 2017; 8:14851. [PMID: 28300074 PMCID: PMC5357306 DOI: 10.1038/ncomms14851] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/07/2017] [Indexed: 01/21/2023] Open
Abstract
Carbohydrates are diverse bio-macromolecules with highly complex structures that are involved in numerous biological processes. Well-defined carbohydrates obtained by chemical synthesis are essential to the understanding of their functions. However, synthesis of carbohydrates is greatly hampered by its insufficient efficiency. So far, assembly of long carbohydrate chains remains one of the most challenging tasks for synthetic chemists. Here we describe a highly efficient assembly of a 92-mer polysaccharide by the preactivation-based one-pot glycosylation protocol. Several linear and branched oligosaccharide/polysaccharide fragments ranging from 5-mer to 31-mer in length have been rapidly constructed in one-pot manner, which enables the first total synthesis of a biologically important mycobacterial arabinogalactan through a highly convergent [31+31+30] coupling reaction. Our results show that the preactivation-based one-pot glycosylation protocol may provide access to the construction of long and complicated carbohydrate chains. Due to the vast number of potential isomers, the chemical synthesis of large carbohydrates is challenging. Here the authors report the synthesis of mycobacterial arabinogalactan, a biologically important natural product composed of 92 monosaccharide units, the largest synthetic polysaccharide to date.
Collapse
|
27
|
Islam M, Shinde GP, Hotha S. Expedient synthesis of the heneicosasaccharyl mannose capped arabinomannan of the Mycobacterium tuberculosis cellular envelope by glycosyl carbonate donors. Chem Sci 2017; 8:2033-2038. [PMID: 28451321 PMCID: PMC5398307 DOI: 10.1039/c6sc04866h] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
Abstract
The global incidence of tuberculosis is increasing at an alarming rate, and Mycobacterium tuberculosis (Mtb) is the causative agent for tuberculosis, a disease with high mortality. Lipoarabinomannan (LAM) is one of the major components of the Mtb cellular envelope and is an attractive scaffold for developing anti-tubercular drugs, vaccines and diagnostics. Herein, a highly convergent strategy is developed to synthesize heneicosasaccharyl arabinomannan for the first time. The arabinomannan synthesized in this endeavour has several 1,2-trans or α-Araf linkages and three 1,2-cis or β-Araf linkages end capped with 1,2-trans or α-Manp linkages. All the key glycosidations were performed with alkynyl carbonate glycosyl donors under [Au]/[Ag] catalysis conditions, which gave excellent yields and stereoselectivity even for the reactions between complex and branched oligosaccharides. The resultant allyl oligosaccharide was globally deprotected to obtain the heneicosasaccharyl arabinomannan as a propyl glycoside. In summary, heneicosasaccharyl mannose capped arabinomannan synthesis was achieved in 56 steps with 0.016% overall yield.
Collapse
Affiliation(s)
- Maidul Islam
- Department of Chemistry , Indian Institute of Science Education and Research , Pune - 411 008 , India .
| | - Ganesh P Shinde
- Department of Chemistry , Indian Institute of Science Education and Research , Pune - 411 008 , India .
| | - Srinivas Hotha
- Department of Chemistry , Indian Institute of Science Education and Research , Pune - 411 008 , India .
| |
Collapse
|
28
|
Naresh K, Schumacher F, Hahm HS, Seeberger PH. Pushing the limits of automated glycan assembly: synthesis of a 50mer polymannoside. Chem Commun (Camb) 2017; 53:9085-9088. [DOI: 10.1039/c7cc04380e] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A 102 step automated synthesis produces a 50mer glycan and provides a basis for investigations into carbohydrate materials.
Collapse
Affiliation(s)
- K. Naresh
- Max Planck Institute of Colloids and Interfaces
- Department of Biomolecular Systems
- 14476 Potsdam-Golm
- Germany
- Freie Universität Berlin
| | - F. Schumacher
- Max Planck Institute of Colloids and Interfaces
- Department of Biomolecular Systems
- 14476 Potsdam-Golm
- Germany
- Freie Universität Berlin
| | - H. S. Hahm
- Max Planck Institute of Colloids and Interfaces
- Department of Biomolecular Systems
- 14476 Potsdam-Golm
- Germany
- Freie Universität Berlin
| | - P. H. Seeberger
- Max Planck Institute of Colloids and Interfaces
- Department of Biomolecular Systems
- 14476 Potsdam-Golm
- Germany
- Freie Universität Berlin
| |
Collapse
|
29
|
Kononov LO, Fedina KG, Orlova AV, Kondakov NN, Abronina PI, Podvalnyy NM, Chizhov AO. Bimodal concentration-dependent reactivity pattern of a glycosyl donor: Is the solution structure involved? Carbohydr Res 2016; 437:28-35. [PMID: 27883907 DOI: 10.1016/j.carres.2016.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 11/30/2022]
Abstract
Changes in concentration (0.001-0.1 M) of an arabinofuranosyl donor (1) have been shown to modulate the temperature T at which activation of 1 occurs (from -23 °C to +7 °C), the reaction time (from 1.5 h to 3 days) and the yield of the disaccharide formed (from 14% to 82%). At concentrations exceeding 0.01 M, these parameters, as well as the specific optical rotation of the solution of 1, virtually do not depend on concentration suggesting formation of reacting species (supramers) of glycosyl donor with similar structures, hence reactivities, but considerably different from those formed in more dilute solutions. The found critical concentration (0.01 M) separates two concentration ranges of reaction solutions corresponding to two types of solution structure that are featured by the presence of fundamentally different supramers of glycosyl donor, which have distinct chemical properties. These results allow a fresh look at the problems of reactivity of chemical compounds and selectivity of the reactions in which they participate.
Collapse
Affiliation(s)
- Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation.
| | - Ksenia G Fedina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Anna V Orlova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Nikolay N Kondakov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Nikita M Podvalnyy
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| |
Collapse
|
30
|
Lee BY, Oh JW, Baek JY, Jeon HB, Kim KS. Phthalic Anhydride-Mediated Direct Glycosylation of Anomeric Hydroxy Arabinofuranose: Synthesis of Repeating Oligoarabinofuranoside and Tetradecasaccharide Arabinan Motif of Mycobacterial Cell Wall. J Org Chem 2016; 81:11372-11383. [DOI: 10.1021/acs.joc.6b01723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo-Young Lee
- Center
for Bioactive Molecular Hybrids and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Jung Woo Oh
- Center
for Bioactive Molecular Hybrids and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Ju Yuel Baek
- Center
for Bioactive Molecular Hybrids and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Heung Bae Jeon
- Department
of Chemistry, Kwangwoon University, Seoul 139-701, Korea
| | - Kwan Soo Kim
- Center
for Bioactive Molecular Hybrids and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
31
|
Abstract
![]()
The cell surface (or cell wall) of bacteria is coated with carbohydrate
(or glycan) structures that play a number of important roles. These
include providing structural integrity, serving as a permeability
barrier to extracellular compounds (e.g., drugs) and modulating the
immune system of the host. Of interest to this Account is the cell
wall structure of mycobacteria. There are a host of different mycobacterial
species, some of which cause human disease. The most well-known is Mycobacterium tuberculosis, the causative agent of tuberculosis.
The mycobacterial cell wall is characterized by the presence of unusual
carbohydrate structures that fulfill the roles described above. However,
in many cases, a molecular-level understanding of how mycobacterial
cell wall glycans mediate these processes is lacking. Inspired
by a seminar he heard as a postdoctoral fellow, the author
began his independent research program with a focus on the chemical
synthesis of mycobacterial glycans. The goals were not only to develop
synthetic approaches to these unique structures but also to provide
molecules that could be used to probe their biological function. Initial
work addressed the preparation of fragments of two key polysaccharides,
arabinogalactan and lipoarabinomannan, which contain large numbers
of sugar residues in the furanose (five-membered) ring form. At the
time these investigations began, there were few methods reported for
the synthesis of oligosaccharides containing furanose rings. Thus,
early in the program, a major area of interest was methodology development,
particularly for the preparation of 1,2-cis-furanosides.
To solve this challenge, a range of conformationally restricted donors
have been developed, both in the author’s group and others,
which provide 1,2-cis-furanosidic linkages with high
stereoselectivity. These investigations were followed by application
of the developed
methods to the synthesis of a range of target molecules containing
arabinofuranose and galactofuranose residues. These molecules have
now found application in biochemical, immunological, and structural
biology investigations, which have shed light on their biosynthesis
and how these motifs are recognized by both the innate and adaptive
immune systems. More recently, attention has been directed toward
the synthesis
of another class of immunologically active mycobacterial cell wall
glycans, the extractable glycolipids. In this case, efforts have been
primarily on phenolic glycolipids, and the compounds synthesized have
been used to evaluate their ability to modulate cytokine release.
Over the past 20 years, the use of chemical synthesis to provide increasingly
complex glycan structures has provided significant benefit to the
burgeoning field of mycobacterial glycobiology. Through the efforts
of groups from around the globe, access to these compounds is now
possible via relatively straightforward methods. As the pool of mycobacterial
glycans continues to grow, so too will our understanding of their
role in disease, which will undoubtedly lead to new strategies to
prevent or treat mycobacterial infections.
Collapse
Affiliation(s)
- Todd L. Lowary
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Gunning−Lemieux
Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
32
|
Syal K, Maiti K, Naresh K, Avaji PG, Chatterji D, Jayaraman N. Synthetic arabinomannan glycolipids impede mycobacterial growth, sliding motility and biofilm structure. Glycoconj J 2016; 33:763-77. [DOI: 10.1007/s10719-016-9670-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/17/2016] [Accepted: 04/26/2016] [Indexed: 11/24/2022]
|
33
|
Rapid synthesis of linear homologous oligoarabinofuranosides related to mycobacterial lipoarabinomannan and a neoglycoconjugate thereof. Carbohydr Res 2016; 431:25-32. [PMID: 27267065 DOI: 10.1016/j.carres.2016.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/12/2016] [Accepted: 05/23/2016] [Indexed: 11/22/2022]
Abstract
Rapid and simple synthesis of oligosaccharides related to one of the terminal motifs of mycobacterial lipoarabinomannan is described. An array of homologous linear α(1 → 5)-linked oligoarabinofuranosides with 4-(2-chloroethoxy)phenyl aglycon and selectively unprotected 5-OH group at the non-reducing end was obtained by oligomerization of 3-O-benzoyl β-D-arabinofuranose 1,2,5-orthobenzoate. Subsequent introduction of β(1 → 2)-linked arabinofuranose disaccharide moiety by step-wise glycosylation furnished the target oligosaccharides which were conjugated with bovine serum albumin.
Collapse
|
34
|
Mishra B, Neralkar M, Hotha S. Stable Alkynyl Glycosyl Carbonates: Catalytic Anomeric Activation and Synthesis of a Tridecasaccharide Reminiscent ofMycobacterium tuberculosisCell Wall Lipoarabinomannan. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Bijoyananda Mishra
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune India
| | - Mahesh Neralkar
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune India
| | - Srinivas Hotha
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune India
| |
Collapse
|
35
|
Mishra B, Neralkar M, Hotha S. Stable Alkynyl Glycosyl Carbonates: Catalytic Anomeric Activation and Synthesis of a Tridecasaccharide Reminiscent ofMycobacterium tuberculosisCell Wall Lipoarabinomannan. Angew Chem Int Ed Engl 2016; 55:7786-91. [DOI: 10.1002/anie.201511695] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Bijoyananda Mishra
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune India
| | - Mahesh Neralkar
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune India
| | - Srinivas Hotha
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune India
| |
Collapse
|
36
|
Synthesis of hexasaccharide fragment of lipoarabonomannan from Mycobacteria: advantages of the benzyl-free approach. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-0992-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Niedbal DA, Madsen R. Halide-mediated regioselective 6-O-glycosylation of unprotected hexopyranosides with perbenzylated glycosyl bromide donors. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.11.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Sahloul K, Lowary TL. Development of an Orthogonal Protection Strategy for the Synthesis of Mycobacterial Arabinomannan Fragments. J Org Chem 2015; 80:11417-34. [DOI: 10.1021/acs.joc.5b02083] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Kamar Sahloul
- Alberta
Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Todd L. Lowary
- Alberta
Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| |
Collapse
|
39
|
Wang L, Feng S, An L, Gu G, Guo Z. Synthetic and Immunological Studies of Mycobacterial Lipoarabinomannan Oligosaccharides and Their Protein Conjugates. J Org Chem 2015; 80:10060-75. [DOI: 10.1021/acs.joc.5b01686] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lizhen Wang
- National Glycoengineering
Research Center, School of Life Science, Shandong University, Jinan 250100, China
| | - Shaojie Feng
- National Glycoengineering
Research Center, School of Life Science, Shandong University, Jinan 250100, China
| | - Lian An
- National Glycoengineering
Research Center, School of Life Science, Shandong University, Jinan 250100, China
| | - Guofeng Gu
- National Glycoengineering
Research Center, School of Life Science, Shandong University, Jinan 250100, China
| | - Zhongwu Guo
- National Glycoengineering
Research Center, School of Life Science, Shandong University, Jinan 250100, China
| |
Collapse
|
40
|
The chemoselective O-glycosylation of alcohols in the presence of a phosphate diester and its application to the synthesis of oligomannosylated phosphatidyl inositols. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Mancini RS, McClary CA, Anthonipillai S, Taylor MS. Organoboron-Promoted Regioselective Glycosylations in the Synthesis of a Saponin-Derived Pentasaccharide from Spergularia ramosa. J Org Chem 2015; 80:8501-10. [PMID: 26292956 DOI: 10.1021/acs.joc.5b00950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Organoboron-mediated regioselective glycosylations were employed as key steps in the total synthesis of a branched pentasaccharide from a saponin natural product. The ability to use organoboron activation to differentiate OH groups in an unprotected glycosyl acceptor, followed by substrate-controlled reactions of the obtained disaccharide, enabled a streamlining of the synthesis relative to a protective group-based approach. This study revealed a matching/mismatching effect of the relative configuration of donor and acceptor on the efficiency of a regioselective glycosylation reaction, a problem that was solved through the development of a novel boronic acid-amine copromoter system for glycosyl acceptor activation.
Collapse
Affiliation(s)
- Ross S Mancini
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Corey A McClary
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Stefi Anthonipillai
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
42
|
Islam M, Gayatri G, Hotha S. Influence of Steric Crowding on Diastereoselective Arabinofuranosylations. J Org Chem 2015. [PMID: 26195010 DOI: 10.1021/acs.joc.5b00964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The occurrence of arabinofuranosides on the cell surface of Mycobacterium tuberculosis (Mtb) and their significance in controlling disease spurred interest in developing strategies for their diastereoselective synthesis. Mtb uses enzymes to achieve diastereoselectivity through noncovalent interactions. Of the two possible glycosidic linkages, chemically, 1,2-trans linkage is relatively easy to synthesize by taking advantage of neighboring group participation, whereas synthesis of the 1,2-cis linkage is notoriously difficult. In this article, stereochemical effects on the diastereoselectivity of arabinofuranosidation are investigated with thiopyridyl, imidate, and thiotolyl donors as well as differently crowded glycosyl acceptors; subtle differences in the stereochemical environment of the acceptors were observed to alter the diastereoselectivity of the furanoside formation. Results from this endeavor suggest that 1,2-cis arabinofuranosides can be synthesized conveniently by conducting the reaction at lower temperature on sterically demanding and less reactive substrates.
Collapse
Affiliation(s)
- Maidul Islam
- †Department of Chemistry, Indian Institute of Science Education and Research, Pune 411 008, India
| | - Gaddamanugu Gayatri
- ‡Centre for Molecular Modelling, Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Srinivas Hotha
- †Department of Chemistry, Indian Institute of Science Education and Research, Pune 411 008, India
| |
Collapse
|
43
|
Hansen SU, Miller GJ, Cliff MJ, Jayson GC, Gardiner JM. Making the longest sugars: a chemical synthesis of heparin-related [4] n oligosaccharides from 16-mer to 40-mer. Chem Sci 2015; 6:6158-6164. [PMID: 30090231 PMCID: PMC6054106 DOI: 10.1039/c5sc02091c] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/23/2015] [Indexed: 01/07/2023] Open
Abstract
The chemical synthesis of long oligosaccharides remains a major challenge. In particular, the synthesis of glycosaminoglycan (GAG) oligosaccharides belonging to the heparin and heparan sulfate (H/HS) family has been a high profile target, particularly with respect to the longer heparanome. Herein we describe a synthesis of the longest heparin-related oligosaccharide to date and concurrently provide an entry to the longest synthetic oligosaccharides of any type yet reported. Specifically, the iterative construction of a series of [4] n -mer heparin-backbone oligosaccharides ranging from 16-mer through to the 40-mer in length is described. This demonstrates for the first time the viability of generating long sequence heparanoids by chemical synthesis, via practical solution-phase synthesis. Pure-Shift HSQC NMR provides a dramatic improvement in anomeric signal resolution, allowing full resolution of all 12 anomeric protons and extrapolation to support anomeric integrity of the longer species. A chemically pure 6-O-desfulfated GlcNS-IdoAS icosasaccharide (20-mer) represents the longest pure synthetic heparin-like oligosaccharide.
Collapse
Affiliation(s)
- Steen U Hansen
- Manchester Institute of Biotechnology and School of Chemistry , University of Manchester , 131 Princess Street , M1 7DN , UK . ; Tel: +44 (0)161 306 4530
| | - Gavin J Miller
- Manchester Institute of Biotechnology and School of Chemistry , University of Manchester , 131 Princess Street , M1 7DN , UK . ; Tel: +44 (0)161 306 4530
| | - Matthew J Cliff
- Manchester Institute of Biotechnology and Faculty of Life Sciences , The University of Manchester , 131 Princess Street , Manchester M1 7DN , UK
| | - Gordon C Jayson
- Institute or Cancer Studies , University of Manchester , Manchester , UK
| | - John M Gardiner
- Manchester Institute of Biotechnology and School of Chemistry , University of Manchester , 131 Princess Street , M1 7DN , UK . ; Tel: +44 (0)161 306 4530
| |
Collapse
|
44
|
Thadke SA, Hotha S. Efficient synthesis of oligosaccharyl 1,2-O-orthoesters from n-pentenyl glycosides and application to the pentaarabinofuranoside of the mycobacterial cell surface. Org Biomol Chem 2014; 12:9914-20. [DOI: 10.1039/c4ob01395f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Thadke SA, Mishra B, Hotha S. Gold(III)-catalyzed glycosidations for 1,2-trans and 1,2-cis furanosides. J Org Chem 2014; 79:7358-71. [PMID: 25020110 DOI: 10.1021/jo501052y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Stereoselective synthesis of furanosides is still a daunting task, unlike the pyranosides, for which several methods exist. Herein, a unified stereoselective strategy for the synthesis of 1,2-trans and 1,2-cis furanosides is revealed for seven out of eight possible isomers of pentoses. The identified protocol gives access to diastereoselective synthesis of α- and β-araf, ribf, lyxf, and α-xylf furanosides. 1,2-trans glycosides were synthesized by the use of propargyl 1,2-orthoesters under gold-catalyzed glycosidation conditions, and subsequently, they are converted into 1,2-cis glycosides through oxidation-reduction as the key functional group transformation. All the reactions are found to be fully diastereoselective, mild, and high yielding.
Collapse
Affiliation(s)
- Shivaji A Thadke
- Department of Chemistry, Indian Institute of Science Education and Research , Pune, Maharashtra 411008, India
| | | | | |
Collapse
|
46
|
The use of O-trifluoroacetyl protection and profound influence of the nature of glycosyl acceptor in benzyl-free arabinofuranosylation. Carbohydr Res 2014; 396:25-36. [PMID: 25079596 DOI: 10.1016/j.carres.2014.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/30/2014] [Accepted: 05/26/2014] [Indexed: 11/22/2022]
Abstract
The influence of O-trifluoroacetyl (TFA) groups at different positions of thioglycoside glycosyl donors on stereoselectivity of α-arabinofuranosylation leading to corresponding disaccharides was studied. It was shown that TFA group in thioglycoside glycosyl donors, when combined with 2-O-(triisopropylsilyl) (TIPS) non-participating group, may be regarded as an electron-withdrawing protecting group that may enhance 1,2-cis-selectivity in arabinofuranosylation, the results strongly depending on the nature of glycosyl acceptor. The reactivities of the glycosyl donors were compared with those of a similar thioglycoside with O-pentafluoropropionyl groups and the known phenyl 3,5-O-(di-tert-butylsilylene)-1-thio-α-d-arabinofuranosides with 2-O-TIPS and 2-O-benzyl groups. The 'matching' in the donor-acceptor combination was found to be critical for achieving both high reactivity of glycosyl donor and β-stereoselectivity of arabinofuranosylation. The use of glycosyl donors with TFA and silyl protection may be useful in the realization of the benzyl-free approach to oligoarabinofuranosides with azido group in aglycon-convenient building blocks for the preparation of neoglycoconjugates.
Collapse
|
47
|
Chlubnová I, Králová B, Dvořáková H, Hošek P, Spiwok V, Filipp D, Nugier-Chauvin C, Daniellou R, Ferrières V. The versatile enzyme Araf51 allowed efficient synthesis of rare pathogen-related β-d-galactofuranosyl-pyranoside disaccharides. Org Biomol Chem 2014; 12:3080-9. [DOI: 10.1039/c3ob42519c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Abstract
An analog of Mycobacterium tuberculosis lipoarabinomannan (LAM) has been synthesized containing the characteristic structures of all of its three major components; that is, a mannosylated phosphatidylinositol moiety, an oligomannan, and an oligoarabinan. A highly convergent strategy was developed that is applicable to the synthesis of other LAM analogs. The synthetic miniature LAM should be useful for various biological studies.
Collapse
Affiliation(s)
- Jian Gao
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Guochao Liao
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Lizhen Wang
- National
Glycoengineering Research Center, Shandong
University, Jinan 250100, China
| | - Zhongwu Guo
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- National
Glycoengineering Research Center, Shandong
University, Jinan 250100, China
| |
Collapse
|
49
|
Gao J, Guo Z. Synthesis of a tristearoyl lipomannan via preactivation-based iterative one-pot glycosylation. J Org Chem 2013; 78:12717-25. [PMID: 24266397 PMCID: PMC3906423 DOI: 10.1021/jo4021979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A convergent and efficient strategy was developed for the synthesis of lipomannan (LM), useful for vaccine development. Thioglycosides were employed as glycosyl donors to construct two key pseudotrisaccharide and tetramannose intermediates through preactivation-based glycosylation strategy. These building blocks were then successfully coupled to form the LM core, which was lapidated, phospholipidated, and finally globally deprotected to afford the target molecule. The intermediate LM core involved in this synthesis contained orthogonal protections, which would facilitate its variable modifications for the preparation of other complex LM derivatives and for the synthesis of LM conjugates as LM-based vaccines.
Collapse
Affiliation(s)
- Jian Gao
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Zhongwu Guo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
- National Glycoengineering Research Center, Shandong University, Jinan 250100, China
| |
Collapse
|
50
|
Lowary TL. Context and complexity: The next big thing in synthetic glycobiology. Curr Opin Chem Biol 2013; 17:990-6. [DOI: 10.1016/j.cbpa.2013.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|