1
|
Corrado ML, Knaus T, Schwaneberg U, Mutti FG. High-Yield Synthesis of Enantiopure 1,2-Amino Alcohols from l-Phenylalanine via Linear and Divergent Enzymatic Cascades. Org Process Res Dev 2022; 26:2085-2095. [PMID: 35873603 PMCID: PMC9295148 DOI: 10.1021/acs.oprd.1c00490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Enantiomerically
pure 1,2-amino alcohols are important compounds
due to their biological activities and wide applications in chemical
synthesis. In this work, we present two multienzyme pathways for the
conversion of l-phenylalanine into either 2-phenylglycinol
or phenylethanolamine in the enantiomerically pure form. Both pathways
start with the two-pot sequential four-step conversion of l-phenylalanine into styrene via subsequent deamination, decarboxylation,
enantioselective epoxidation, and enantioselective hydrolysis. For
instance, after optimization, the multienzyme process could convert
507 mg of l-phenylalanine into (R)-1-phenyl-1,2-diol
in an overall isolated yield of 75% and >99% ee. The opposite enantiomer,
(S)-1-phenyl-1,2-diol, was also obtained in a 70%
yield and 98–99% ee following the same approach. At this stage,
two divergent routes were developed to convert the chiral diols into
either 2-phenylglycinol or phenylethanolamine. The former route consisted
of a one-pot concurrent interconnected two-step cascade in which the
diol intermediate was oxidized to 2-hydroxy-acetophenone by an alcohol
dehydrogenase and then aminated by a transaminase to give enantiomerically
pure 2-phenylglycinol. Notably, the addition of an alanine dehydrogenase
enabled the connection of the two steps and made the overall process
redox-self-sufficient. Thus, (S)-phenylglycinol was
isolated in an 81% yield and >99.4% ee starting from ca. 100 mg
of
the diol intermediate. The second route consisted of a one-pot concurrent
two-step cascade in which the oxidative and reductive steps were not
interconnected. In this case, the diol intermediate was oxidized to
either (S)- or (R)-2-hydroxy-2-phenylacetaldehyde
by an alcohol oxidase and then aminated by an amine dehydrogenase
to give the enantiomerically pure phenylethanolamine. The addition
of a formate dehydrogenase and sodium formate was required to provide
the reducing equivalents for the reductive amination step. Thus, (R)-phenylethanolamine was isolated in a 92% yield and >99.9%
ee starting from ca. 100 mg of the diol intermediate. In summary, l-phenylalanine was converted into enantiomerically pure 2-phenylglycinol
and phenylethanolamine in overall yields of 61% and 69%, respectively.
This work exemplifies how linear and divergent enzyme cascades can
enable the synthesis of high-value chiral molecules such as amino
alcohols from a renewable material such as l-phenylalanine
with high atom economy and improved sustainability.
Collapse
Affiliation(s)
- Maria L. Corrado
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Tanja Knaus
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Francesco G. Mutti
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
2
|
Nguyen TH, Ma E. Efficient diastereoselective synthesis of cis-2-amino-1-indanol derivatives and cis- and trans-1-amino-2-indanol via Pd-catalyzed hydrogenation. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1989595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Thi Ha Nguyen
- Department of Phytochemistry, National Institute of Medicinal Materials (NIMM), Hanoi, Vietnam
| | - Eunsook Ma
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| |
Collapse
|
3
|
Zhang J, Qi N, Gao L, Li J, Zhang C, Chang H. One-pot synthesis of (R)- and (S)-phenylglycinol from bio-based L-phenylalanine by an artificial biocatalytic cascade. BIORESOUR BIOPROCESS 2021; 8:97. [PMID: 38650191 PMCID: PMC10991228 DOI: 10.1186/s40643-021-00448-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/21/2021] [Indexed: 11/10/2022] Open
Abstract
Chiral phenylglycinol is a very important chemical in the pharmaceutical manufacturing. Current methods for synthesis of chiral phenylglycinol often suffered from unsatisfied selectivity, low product yield and using the non-renewable resourced substrates, then the synthesis of chiral phenylglycinol remain a grand challenge. Design and construction of synthetic microbial consortia is a promising strategy to convert bio-based materials into high value-added chiral compounds. In this study, we reported a six-step artificial cascade biocatalysis system for conversion of bio-based L-phenylalanine into chiral phenylglycinol. This system was designed using a microbial consortium including two engineered recombinant Escherichia coli cell modules, one recombinant E. coli cell module co-expressed six different enzymes (phenylalanine ammonia lyase/ferulic acid decarboxylase/phenylacrylic acid decarboxylase/styrene monooxygenase/epoxide hydrolase/alcohol dehydrogenase) for efficient conversion of L-phenylalanine into 2-hydroxyacetophenone. The second recombinant E. coli cell module expressed an (R)-ω-transaminase or co-expressed the (S)-ω-transaminase, alanine dehydrogenase and glucose dehydrogenase for conversion of 2-hydroxyacetophenone into (S)- or (R)-phenylglycinol, respectively. Combining the two engineered E. coli cell modules, after the optimization of bioconversion conditions (including pH, temperature, glucose concentration, amine donor concentration and cell ratio), L-phenylalanine could be easily converted into (R)-phenylglycinol and (S)-phenylglycinol with up to 99% conversion and > 99% ee. Preparative scale biotransformation was also conducted on 100-mL scale, (S)-phenylglycinol and (R)-phenylglycinol could be obtained in 71.0% and 80.5% yields, > 99% ee, and 5.19 g/L d and 4.42 g/L d productivity, respectively. The salient features of this biocatalytic cascade system are good yields, excellent ee, mild reaction condition and no need for additional cofactor (NADH/NAD+), provide a practical biocatalytic method for sustainable synthesis of (S)-phenylglycinol and (R)-phenylglycinol from bio-based L-phenylalanine.
Collapse
Affiliation(s)
- Jiandong Zhang
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China.
| | - Ning Qi
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| | - Lili Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Jing Li
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| | - Chaofeng Zhang
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| | - Honghong Chang
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| |
Collapse
|
4
|
Gupta P, Chaubey A, Mahajan N, Anand N. A review on Arthrobacter sp. lipase: A versatile biocatalyst for the kinetic resolution to access enantiomerically pure/enriched compounds. Chirality 2021; 33:209-225. [PMID: 33675087 DOI: 10.1002/chir.23304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 11/10/2022]
Abstract
Over the last few years, there has been a dramatic increase in the number of reports related to Arthrobacter sp. lipase (ABL:MTCC No. 5125) catalyzed kinetic resolution performed in biphasic media. A strain displaying esterase/lipase activity and designated as ABL was isolated, during the course of a screening program at Indian Institute of Integrative Medicine, Jammu. Considerable research has shown that reactions catalyzed by ABL are more selective than many commercial lipases. Since new applications of this lipase are emerging, there is a great need to provide all the relevant information exclusively. This review article is an attempt to cover all the relevant reports based on isolation, purification, immobilization, and application of ABL in the biopharmaceutical sector.
Collapse
Affiliation(s)
- Pankaj Gupta
- Govt. Degree College Kathua, Affiliated to University of Jammu, Jammu, Union Territory of Jammu and Kashmir, 184104, India
| | - Asha Chaubey
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Union Territory of Jammu and Kashmir, 180001, India
| | - Neha Mahajan
- Govt. Degree College Kathua, Affiliated to University of Jammu, Jammu, Union Territory of Jammu and Kashmir, 184104, India
| | - Naveen Anand
- GGM Science College, Cluster University of Jammu, Union Territory of Jammu and Kashmir, 180001, India
| |
Collapse
|
5
|
Qin L, Wu L, Nie Y, Xu Y. Biosynthesis of chiral cyclic and heterocyclic alcohols via CO/C–H/C–O asymmetric reactions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00113b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers the recent progress in various biological approaches applied to the synthesis of enantiomerically pure cyclic and heterocyclic alcohols through CO/C–H/C–O asymmetric reactions.
Collapse
Affiliation(s)
- Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| |
Collapse
|
6
|
Zhang JD, Chang YW, Dong R, Yang XX, Gao LL, Li J, Huang SP, Guo XM, Zhang CF, Chang HH. Enantioselective Cascade Biocatalysis for Deracemization of Racemic β-Amino Alcohols to Enantiopure (S)-β-Amino Alcohols by Employing Cyclohexylamine Oxidase and ω-Transaminase. Chembiochem 2020; 22:124-128. [PMID: 32789939 DOI: 10.1002/cbic.202000491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/11/2020] [Indexed: 12/28/2022]
Abstract
Optically active β-amino alcohols are very useful chiral intermediates frequently used in the preparation of pharmaceutically active substances. Here, a novel cyclohexylamine oxidase (ArCHAO) was identified from the genome sequence of Arthrobacter sp. TYUT010-15 with the R-stereoselective deamination activity of β-amino alcohol. ArCHAO was cloned and successfully expressed in E. coli BL21, purified and characterized. Substrate-specific analysis revealed that ArCHAO has high activity (4.15 to 6.34 U mg-1 protein) and excellent enantioselectivity toward the tested β-amino alcohols. By using purified ArCHAO, a wide range of racemic β-amino alcohols were resolved, (S)-β-amino alcohols were obtained in >99 % ee. Deracemization of racemic β-amino alcohols was conducted by ArCHAO-catalyzed enantioselective deamination and transaminase-catalyzed enantioselective amination to afford (S)-β-amino alcohols in excellent conversion (78-94 %) and enantiomeric excess (>99 %). Preparative-scale deracemization was carried out with 50 mM (6.859 g L-1 ) racemic 2-amino-2-phenylethanol, (S)-2-amino-2-phenylethanol was obtained in 75 % isolated yield and >99 % ee.
Collapse
Affiliation(s)
- Jian-Dong Zhang
- Department of Biological and Pharmaceutical Engineering College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, Shanxi, P. R. China
| | - Ya-Wen Chang
- Department of Environmental Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| | - Rui Dong
- Department of Biological and Pharmaceutical Engineering College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, Shanxi, P. R. China
| | - Xiao-Xiao Yang
- Department of Biological and Pharmaceutical Engineering College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, Shanxi, P. R. China
| | - Li-Li Gao
- Department of Environmental Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| | - Jing Li
- Department of Biological and Pharmaceutical Engineering College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, Shanxi, P. R. China
| | - Shuang-Ping Huang
- Department of Biological and Pharmaceutical Engineering College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, Shanxi, P. R. China
| | - Xing-Mei Guo
- Department of Environmental Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| | - Chao-Feng Zhang
- Department of Biological and Pharmaceutical Engineering College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, Shanxi, P. R. China
| | - Hong-Hong Chang
- Department of Biological and Pharmaceutical Engineering College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, Shanxi, P. R. China
| |
Collapse
|
7
|
High throughput solid-phase screening of bacteria with cyclic amino alcohol deamination activity for enantioselective synthesis of chiral cyclic β-amino alcohols. Biotechnol Lett 2020; 42:1501-1511. [PMID: 32219689 DOI: 10.1007/s10529-020-02869-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/19/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To screening of bacteria with cyclic amino alcohol deamination activity for enantioselective synthesis of chiral cyclic β-amino alcohols. RESULTS A new strain named Arthrobacter sp. TYUT010-15 with the (R)-selective deamination activity of cyclic β-amino alcohol has been isolated from nature via a high throughput solid-phase screening method. The reaction conditions of TYUT010-15 were optimized. Using the resting cell of TYUT010-15 as the catalyst, kinetic resolution of trans-2-aminocyclopentanol, trans-2-aminocyclohexanol and cis-1-amino-2-indanol was carried out to afford (1S, 2S)-trans-2-aminocyclopentanol, (1S, 2S)-trans-2-aminocyclohexanol and (1R, 2S)-cis-1-amino-2-indanol in > 99% ee and 49.6-50% conversion. Four aromatic β-amino alcohols and two amines were also resolved, (S)-β-amino alcohols and (R)-amines were obtained in > 99% ee. Preparation experiment was conducted with 200 mM (23.2 g L-1) racemic trans-2-aminocyclohexanol, yielding the desired (1S, 2S)-trans-2-aminocyclohexanol in 40% isolated yield, > 99% ee and 5.8 g L-1 d-1 space time yields. CONCLUSIONS This study provides a high throughput solid-phase method for screening of bacteria with cyclic amino alcohol deamination activity and a first example for practical preparation of chiral cyclic β-amino alcohol by Arthrobacter sp. TYUT010-15.
Collapse
|
8
|
Sun Z, Zhang Z, Li F, Nie Y, Yu H, Xu J. One Pot Asymmetric Synthesis of (
R
)‐Phenylglycinol from Racemic Styrene Oxide via Cascade Biocatalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zai‐Bao Sun
- State Key Laboratory of Bioreactor EngineeringShanghai Collaborative Innovation Center for BiomanufacturingEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Zhi‐Jun Zhang
- State Key Laboratory of Bioreactor EngineeringShanghai Collaborative Innovation Center for BiomanufacturingEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Fu‐Long Li
- State Key Laboratory of Bioreactor EngineeringShanghai Collaborative Innovation Center for BiomanufacturingEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Yao Nie
- School of BiotechnologyKey laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University Wuxi 214122 P.R. China
| | - Hui‐Lei Yu
- State Key Laboratory of Bioreactor EngineeringShanghai Collaborative Innovation Center for BiomanufacturingEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Jian‐He Xu
- State Key Laboratory of Bioreactor EngineeringShanghai Collaborative Innovation Center for BiomanufacturingEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| |
Collapse
|
9
|
Cotman AE, Lozinšek M, Wang B, Stephan M, Mohar B. trans-Diastereoselective Ru(II)-Catalyzed Asymmetric Transfer Hydrogenation of α-Acetamido Benzocyclic Ketones via Dynamic Kinetic Resolution. Org Lett 2019; 21:3644-3648. [PMID: 31058516 PMCID: PMC6750876 DOI: 10.1021/acs.orglett.9b01069] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
A highly
efficient enantio- and diastereoselective catalyzed asymmetric
transfer hydrogenation via dynamic kinetic resolution (DKR–ATH)
of α,β-dehydro-α-acetamido and α-acetamido
benzocyclic ketones to ent-trans-β-amido alcohols is disclosed employing a new ansa-Ru(II) complex of an enantiomerically pure syn-N,N-ligand, i.e. ent-syn-ULTAM-(CH2)3Ph. DFT calculations
of the transition state structures revealed an atypical two-pronged
substrate attractive stabilization engaging the commonly encountered
CH/π electrostatic interaction and a new additional O=S=O···HNAc
H-bond hence favoring the trans-configured products.
Collapse
Affiliation(s)
- Andrej Emanuel Cotman
- National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia.,Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Matic Lozinšek
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Baifan Wang
- National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| | - Michel Stephan
- National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| | - Barbara Mohar
- National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|
10
|
Horáková E, Valtr J, Dostálová K, Drabina P, Váňa J, Růžička A, Hanusek J. A Kinetic Study of the Intramolecular Nitroaldol (Henry) Reaction Giving 2‐Nitroindan‐1‐ols. ChemistrySelect 2019. [DOI: 10.1002/slct.201900481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eva Horáková
- Institute of Organic Chemistry and TechnologyFaculty of Chemical TechnologyUniversity of Pardubice Studentská 573, CZ-532 10 Pardubice The Czech Republic
| | - Jakub Valtr
- Institute of Organic Chemistry and TechnologyFaculty of Chemical TechnologyUniversity of Pardubice Studentská 573, CZ-532 10 Pardubice The Czech Republic
| | - Kamila Dostálová
- Institute of Organic Chemistry and TechnologyFaculty of Chemical TechnologyUniversity of Pardubice Studentská 573, CZ-532 10 Pardubice The Czech Republic
| | - Pavel Drabina
- Institute of Organic Chemistry and TechnologyFaculty of Chemical TechnologyUniversity of Pardubice Studentská 573, CZ-532 10 Pardubice The Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and TechnologyFaculty of Chemical TechnologyUniversity of Pardubice Studentská 573, CZ-532 10 Pardubice The Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic ChemistryFaculty of Chemical Technology, University of Pardubice Studentská 573 CZ-532 10 Pardubice The Czech Republic
| | - Jiří Hanusek
- Institute of Organic Chemistry and TechnologyFaculty of Chemical TechnologyUniversity of Pardubice Studentská 573, CZ-532 10 Pardubice The Czech Republic
| |
Collapse
|
11
|
Reddy UC, Manheri MK. 1-Hydroxymethyl-7-oxabicyclo[2.2.1]hept-2-ene skeleton in enantiopure form through enzymatic kinetic resolution. Chirality 2019; 31:336-347. [PMID: 30753757 DOI: 10.1002/chir.23060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 11/11/2022]
|
12
|
Zhang JD, Yang XX, Jia Q, Zhao JW, Gao LL, Gao WC, Chang HH, Wei WL, Xu JH. Asymmetric ring opening of racemic epoxides for enantioselective synthesis of (S)-β-amino alcohols by a cofactor self-sufficient cascade biocatalysis system. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02377h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Asymmetric ring opening of racemic epoxides to enantiopure β-amino alcohols via a cascade biocatalysis system.
Collapse
Affiliation(s)
- Jian-Dong Zhang
- Department of Biological and Pharmaceutical Engineering
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Xiao-Xiao Yang
- Department of Biological and Pharmaceutical Engineering
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Qiao Jia
- Department of Biological and Pharmaceutical Engineering
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Jian-Wei Zhao
- Department of Biological and Pharmaceutical Engineering
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Li-Li Gao
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - When-Chao Gao
- Department of Biological and Pharmaceutical Engineering
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Hong-Hong Chang
- Department of Biological and Pharmaceutical Engineering
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Wen-Long Wei
- Department of Biological and Pharmaceutical Engineering
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Bioprocessing
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
13
|
Zhang JD, Zhao JW, Gao LL, Chang HH, Wei WL, Xu JH. Enantioselective synthesis of enantiopure β-amino alcohols via kinetic resolution and asymmetric reductive amination by a robust transaminase from Mycobacterium vanbaalenii. J Biotechnol 2019; 290:24-32. [DOI: 10.1016/j.jbiotec.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
|
14
|
Owsianik K, Krawczyk E, Mielniczak G, Koprowski M, Sieroń L. Three-step synthesis of chiral and sterically hindered amino alcohols based on cyclic enol phosphates. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Gupta P, Mahajan N. Biocatalytic approaches towards the stereoselective synthesis of vicinal amino alcohols. NEW J CHEM 2018. [DOI: 10.1039/c8nj00485d] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The global need for clean manufacturing technologies and the management of hazardous chemicals and waste present new research challenges to both chemistry and biotechnology.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Chemistry
- Govt. Degree College Kathua
- University of Jammu
- Higher Education Department
- India
| | - Neha Mahajan
- Department of Biotechnology
- Govt. Degree College Kathua
- University of Jammu
- Higher Education Department
- India
| |
Collapse
|
16
|
Zhao JW, Wu HL, Zhang JD, Gao WC, Fan XJ, Chang HH, Wei WL, Xu JH. One pot simultaneous preparation of both enantiomer of β-amino alcohol and vicinal diol via cascade biocatalysis. Biotechnol Lett 2017; 40:349-358. [PMID: 29124518 DOI: 10.1007/s10529-017-2471-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/02/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To investigate the efficiency of a new cascade biocatalysis system for the conversion of R, S-β-amino alcohols to enantiopure vicinal diol and β-amino alcohol. RESULTS An efficient cascade biocatalysis was achieved by combination of a transaminase, a carbonyl reductase and a cofactor regeneration system. An ee value of > 99% for 2-amino-2-phenylethanol and 1-phenyl-1, 2-ethanediol were simultaneously obtained with 50% conversion from R, S-2-amino-2-phenylethanol. The generality of the cascade biocatalysis was further demonstrated with the whole-cell approaches to convert 10-60 mM R, S-β-amino alcohol to (R)- and (S)-diol and (R)- and (S)-β-amino alcohol in 90-99% ee with 50-52% conversion. Preparative biotransformation was demonstrated at a 50 ml scale with mixed recombinant cells to give both (R)- and (S)-2-amino-2-phenylethanol and (R)- and (S)-1-phenyl-1, 2-ethanediol in > 99% ee and 40-42% isolated yield from racemic 2-amino-2-phenylethanol. CONCLUSIONS This cascade biocatalysis system provides a new practical method for the simultaneous synthesis of optically pure vicinal diol and an β-amino alcohol.
Collapse
Affiliation(s)
- Jian-Wei Zhao
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Hua-Lei Wu
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Jian-Dong Zhang
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China.
| | - Wen-Chao Gao
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Xiao-Jun Fan
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Hong-Hong Chang
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Wen-Long Wei
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Bioprocessing, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
17
|
Lipases in asymmetric transformations: Recent advances in classical kinetic resolution and lipase–metal combinations for dynamic processes. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Zhang JD, Wu HL, Meng T, Zhang CF, Fan XJ, Chang HH, Wei WL. A high-throughput microtiter plate assay for the discovery of active and enantioselective amino alcohol-specific transaminases. Anal Biochem 2017; 518:94-101. [DOI: 10.1016/j.ab.2016.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022]
|
19
|
Alalla A, Merabet-Khelassi M, Riant O, Aribi-Zouioueche L. Easy kinetic resolution of some β-amino alcohols by Candida antarctica lipase B catalyzed hydrolysis in organic media. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Cenp-E inhibitor GSK923295: Novel synthetic route and use as a tool to generate aneuploidy. Oncotarget 2016; 6:20921-32. [PMID: 26320186 PMCID: PMC4673239 DOI: 10.18632/oncotarget.4879] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/24/2015] [Indexed: 11/29/2022] Open
Abstract
Aneuploidy is a common feature of cancer, with human solid tumour cells typically harbouring abnormal chromosome complements. The aneuploidy observed in cancer is often caused by a chromosome instability phenotype, resulting in genomic heterogeneity. However, the role aneuploidy and chromosome instability play in tumour evolution and chemotherapy response remains poorly understood. In some contexts, aneuploidy has oncogenic effects, whereas in others it is anti-proliferative and tumour-suppressive. Dissecting fully the role aneuploidy plays in tumourigenesis requires tools and facile assays that allow chromosome missegregation to be induced experimentally in cells that are otherwise diploid and chromosomally stable. Here, we describe a chemical biology approach that induces low-level aneuploidy across a large population of cells. Specifically, cells are first exposed to GSK923295, an inhibitor targeting the mitotic kinesin Cenp-E; while the majority of chromosomes align at the cell's equator, a small number cluster near the spindle poles. By then driving these cells into anaphase using AZ3146, an inhibitor targeting the spindle checkpoint kinase Mps1, the polar chromosomes are missegregated. This results in, on average, two chromosome missegregation events per division, and avoids trapping chromosomes in the spindle midzone, which could otherwise lead to DNA damage. We also describe an efficient route for the synthesis of GSK923295 that employs a novel enzymatic resolution. Together, the approaches described here open up new opportunities for studying cellular responses to aneuploidy.
Collapse
|
21
|
Méndez-Sánchez D, Ríos-Lombardía N, Gotor V, Gotor-Fernández V. Asymmetric synthesis of azolium-based 1,2,3,4-tetrahydronaphthalen-2-ols through lipase-catalyzed resolutions. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Rouf A, Taneja SC. Synthesis of single-enantiomer bioactive molecules: a brief overview. Chirality 2013; 26:63-78. [PMID: 24339171 DOI: 10.1002/chir.22268] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/27/2013] [Indexed: 01/01/2023]
Abstract
Chiral-center enantiomers have been shown to differ significantly in biological activity, pharmacodynamics, pharmacokinetics and toxicity. New developments in the stereoselective organic synthesis have enriched the vast literature of synthetic methodologies applicable to access natural products as well as bioactive molecules. These compounds also include new drugs, drug candidates and reagents used to explore biological processes. The article reviews the synthesis of optically pure drugs, biologically active intermediates and amino alcohols by using different methods.
Collapse
Affiliation(s)
- Abdul Rouf
- Bio-organic Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | | |
Collapse
|
23
|
González-Sabín J, Ríos-Lombardía N, Gotor V, Morís F. Enzymatic transesterification of pharmacologically interesting β-aminocycloalkanol precursors. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Rouf A, Gupta P, Aga MA, Kumar B, Chaubey A, Parshad R, Taneja SC. Chemoenzymatic synthesis of piperoxan, prosympal, dibozane, and doxazosin. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|