1
|
Silva FMWG, Szemes J, Mustashev A, Takács O, Imarah AO, Poppe L. Immobilization of Lipase B from Candida antarctica on Magnetic Nanoparticles Enhances Its Selectivity in Kinetic Resolutions of Chiral Amines with Several Acylating Agents. Life (Basel) 2023; 13:1560. [PMID: 37511935 PMCID: PMC10381355 DOI: 10.3390/life13071560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In lipase-catalyzed kinetic resolutions (KRs), the choice of immobilization support and acylating agents (AAs) is crucial. Lipase B from Candida antarctica immobilized onto magnetic nanoparticles (CaLB-MNPs) has been successfully used for diverse KRs of racemic compounds, but there is a lack of studies of the utilization of this potent biocatalyst in the KR of chiral amines, important pharmaceutical building blocks. Therefore, in this work, several racemic amines (heptane-2-amine, 1-methoxypropan-2-amine, 1-phenylethan-1-amine, and 4-phenylbutan-2-amine, (±)-1a-d, respectively) were studied in batch and continuous-flow mode utilizing different AAs, such as diisopropyl malonate 2A, isopropyl 2-cyanoacetate 2B, and isopropyl 2-ethoxyacetate 2C. The reactions performed with CaLB-MNPs were compared with Novozym 435 (N435) and the results in the literature. CaLB-MNPs were less active than N435, leading to lower conversion, but demonstrated a higher enantiomer selectivity, proving to be a good alternative to the commercial form. Compound 2C resulted in the best balance between conversion and enantiomer selectivity among the acylating agents. CaLB-MNPs proved to be efficient in the KR of chiral amines, having comparable or superior properties to other CaLB forms utilizing porous matrices for immobilization. An additional advantage of using CaLB-MNPs is that the purification and reuse processes are facilitated via magnetic retention/separation. In the continuous-flow mode, the usability and operational stability of CaLB-MNPs were reaffirmed, corroborating with previous studies, and the results overall improve our understanding of this potent biocatalyst and the convenient U-shape reactor used.
Collapse
Affiliation(s)
- Fausto M W G Silva
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - József Szemes
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Akan Mustashev
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Orsolya Takács
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Ali O Imarah
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Chemical Engineering Department, College of Engineering, University of Babylon, Hilla Babylon 5100, Iraq
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, Arany János Str. 11, RO-400028 Cluj-Napoca, Romania
- SynBiocat Ltd., Szilasliget u 3, H-1172 Budapest, Hungary
| |
Collapse
|
2
|
Dias MDRG, da Silva GPC, de Pauloveloso A, Krieger N, Pilissão C. Biocatalytic asymmetric synthesis of secondary allylic alcohols using Burkholderia cepacia lipase immobilized on multiwalled carbon nanotubes. Chirality 2022; 34:1008-1018. [PMID: 35506895 DOI: 10.1002/chir.23454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/11/2022]
Abstract
The lipase from Burkholderia cepacia (BCL) was immobilized through physical adsorption on pristine and functionalized multiwalled carbon nanotubes (MWCNTs) with carboxyl or amine groups and used in the stereoselective acylation of (R,S)-1-octen-3-ol (1) and (R,S)-(E)-4-phenyl-3-buten-2-ol (4) with vinyl acetate. All immobilized preparations produced better results than free BCL. For (R,S)-4, 50% conversion and E > 200 were obtained in n-hexane or in solvent-free medium. For (R,S)-1, in solvent-free medium, the conversion was 38% with a slight increase in the E-value (E = 10).
Collapse
Affiliation(s)
| | | | | | - Nadia Krieger
- Departamento de Química, Universidade Federal do Paraná, Curitiba, Brazil
| | - Cristiane Pilissão
- Departamento de Química e Biologia, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
3
|
Sripada A, Thanzeel FY, Wolf C. Unified sensing of the concentration and enantiomeric composition of chiral compounds with an achiral probe. Chem 2022. [DOI: 10.1016/j.chempr.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Almeida FLC, Castro MPJ, Travália BM, Forte MBS. Erratum to “Trends in lipase immobilization: Bibliometric review and patent analysis” [Process Biochem. 110 (2021) 37–51]. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Wosińska-Hrydczuk M, Skarżewski J. New Advances in the Synthetic Application of Enantiomeric 1-Phenylethylamine (α-PEA): Privileged Chiral Inducer and Auxiliary. Molecules 2020; 25:E4907. [PMID: 33114098 PMCID: PMC7660327 DOI: 10.3390/molecules25214907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
New developments in the synthesis, resolution, and synthetic applications of chiral 1-phenylethylamine (α-PEA) reported in the last decade have been reviewed. In particular, improvements in the synthesis of α-PEA and its derivatives and chiral resolution, as well as their applications in the resolution of other compounds, were discussed. α-PEA was used as a chiral auxiliary in the diastereoselective synthesis of medicinal substances and natural products. Chiral ligands with α-PEA moieties were applied in asymmetric reactions, and effective modular chiral organocatalysts were constructed with α-PEA fragments and used in important synthetic reactions.
Collapse
Affiliation(s)
| | - Jacek Skarżewski
- Chair of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland;
| |
Collapse
|
6
|
Lipase immobilization on ceramic supports: An overview on techniques and materials. Biotechnol Adv 2020; 42:107581. [DOI: 10.1016/j.biotechadv.2020.107581] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
|
7
|
Kaabel S, Friščić T, Auclair K. Mechanoenzymatic Transformations in the Absence of Bulk Water: A More Natural Way of Using Enzymes. Chembiochem 2019; 21:742-758. [PMID: 31651073 DOI: 10.1002/cbic.201900567] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sandra Kaabel
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Tomislav Friščić
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Karine Auclair
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
8
|
Melchiors MS, Vieira TY, Pereira LPS, Carciofi BAM, de Araújo PHH, Oliveira DD, Sayer C. Epoxidation of ( R)-(+)-Limonene to 1,2-Limonene Oxide Mediated by Low-Cost Immobilized Candida antarctica Lipase Fraction B. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marina S. Melchiors
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil
| | - Thayne Y. Vieira
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil
| | - Luiz P. S. Pereira
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil
| | - Bruno A. M. Carciofi
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil
| | - Pedro H. H. de Araújo
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil
| | - Claudia Sayer
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
9
|
Enhancement of catalytic activity of lipase-immobilized Fe3O4-chitosan microsphere for enantioselective acetylation of racemic 1-phenylethylamine. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0249-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Versatility of Candida antarctica lipase in the amide bond formation applied in organic synthesis and biotechnological processes. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Facin BR, Melchiors MS, Valério A, Oliveira JV, Oliveira DD. Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00448] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bruno R. Facin
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Marina S. Melchiors
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Alexsandra Valério
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - J. Vladimir Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
12
|
Farkas E, Oláh M, Földi A, Kóti J, Éles J, Nagy J, Gal CA, Paizs C, Hornyánszky G, Poppe L. Chemoenzymatic Dynamic Kinetic Resolution of Amines in Fully Continuous-Flow Mode. Org Lett 2018; 20:8052-8056. [DOI: 10.1021/acs.orglett.8b03676] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emese Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Márk Oláh
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Attila Földi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - János Kóti
- Gedeon Richter Plc., P.O. Box 27, H-1475 Budapest, Hungary
| | - János Éles
- Gedeon Richter Plc., P.O. Box 27, H-1475 Budapest, Hungary
| | - József Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Cristian Andrei Gal
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, RO-400028 Cluj-Napoca, Romania
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, RO-400028 Cluj-Napoca, Romania
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- SynBiocat LLC., Szilasliget u. 3, H-1172 Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, RO-400028 Cluj-Napoca, Romania
- SynBiocat LLC., Szilasliget u. 3, H-1172 Budapest, Hungary
| |
Collapse
|
13
|
Bassut J, Rocha ÂM, da S. França A, Leão RA, Monteiro CM, Afonso CA, de Souza RO. PEG600-carboxylates as acylating agents for the continuous enzymatic kinetic resolution of alcohols and amines. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Oláh M, Kovács D, Katona G, Hornyánszky G, Poppe L. Optimization of 2-alkoxyacetates as acylating agent for enzymatic kinetic resolution of chiral amines. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
Efficient resolution of (R,S)-1-(1-naphthyl)ethylamine by Candida antarctica lipase B in ionic liquids. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Oláh M, Boros Z, Hornyánszky G, Poppe L. Isopropyl 2-ethoxyacetate—an efficient acylating agent for lipase-catalyzed kinetic resolution of amines in batch and continuous-flow modes. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.12.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Wang J, Liu N, Cheng X, Chen L. Efficient continuous kinetic resolution of racemic 2-aminobutanol over immobilized penicillin G acylase. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1181763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jianxin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Na Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Xiaobo Cheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| |
Collapse
|
18
|
Shimotori Y, Hoshi M, Miyakoshi T. Combination of Novozym 435-catalyzed Enantioselective Hydrolysis and Amidation for the Preparation of Optically Active δ-Hexadecalactone. J Oleo Sci 2015; 64:561-75. [DOI: 10.5650/jos.ess14232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yasutaka Shimotori
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology
| | - Masayuki Hoshi
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology
| | - Tetsuo Miyakoshi
- Department of Applied Chemistry, School of Science and Technology, Meiji University
| |
Collapse
|
19
|
Radu A, Moisă ME, Toşa MI, Dima N, Zaharia V, Irimie FD. Candida antarctica lipases acting as versatile catalysts for the synthesis of enantiopure (R)- and (S)-1-(2-phenylthiazol-4-yl)ethanamines. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Tielmann P, Kierkels H, Zonta A, Ilie A, Reetz MT. Increasing the activity and enantioselectivity of lipases by sol-gel immobilization: further advancements of practical interest. NANOSCALE 2014; 6:6220-8. [PMID: 24676487 DOI: 10.1039/c3nr06317h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The entrapment of lipases in hydrophobic silicate matrices formed by sol-gel mediated hydrolysis of RSi(OCH3)3/Si(OCH3)4 as originally reported in 1996 has been improved over the years by a number of modifications. In the production of second-generation sol-gel lipase immobilizates, a variety of additives during the sol-gel process leads to increased activity and enhanced stereoselectivity in esterifying kinetic resolution. Recent advances in this type of lipase immobilization are reviewed here, in addition to new results regarding the sol-gel entrapment of the lipase from Burkholderia cepacia. It constitutes an excellent heterogeneous biocatalyst in the acylating kinetic resolution of two synthetically and industrially important chiral alcohols, rac-sulcatol and rac-trans-2-methoxycyclohexanol. The observation that the catalyst can be used 10 times in recycling experiments without losing its significant activity or enantioselectivity demonstrates the practical viability of the sol-gel approach.
Collapse
Affiliation(s)
- Patrick Tielmann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany.
| | | | | | | | | |
Collapse
|
21
|
Milnacipran as a challenging example of aminomethyl substrate for lipase-catalyzed kinetic resolution. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
de Miranda AS, Miranda LSM, de Souza ROMA. Ethyl acetate as an acyl donor in the continuous flow kinetic resolution of (±)-1-phenylethylamine catalyzed by lipases. Org Biomol Chem 2014; 11:3332-6. [PMID: 23558581 DOI: 10.1039/c3ob40437d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of chiral amines is still a challenge for organic synthesis since optically pure amines are of great importance for the pharmaceutical and agrochemical industries. Among all the methodologies developed until now, chemoenzymatic dynamic kinetic resolution has proven to be useful for the preparation of enantioenriched primary chiral amines. In our continuous efforts toward the development of a continuous flow process, herein we report our results on the continuous flow kinetic resolution of (±)-1-phenylethylamine leading to the desired products with high enantiomeric ratios (>200) and short residence times (40 minutes) using ethyl acetate as the acyl donor.
Collapse
Affiliation(s)
- Amanda S de Miranda
- Biocatalysis and Organic Synthesis Group, Federal University of Rio de Janeiro, Chemistry Institute, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
23
|
|
24
|
Hietanen A, Saloranta T, Leino R, Kanerva LT. Lipase catalysis in the preparation of 3-(1-amino-3-butenyl)pyridine enantiomers. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
|
26
|
Brem J, Bencze LC, Liljeblad A, Turcu MC, Paizs C, Irimie FD, Kanerva LT. Chemoenzymatic Preparation of 1-Heteroarylethanamines of Low Solubility. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200330] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Xie Y, Pan H, Xiao X, Li S, Shi Y. Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine. Org Biomol Chem 2012; 10:8960-2. [DOI: 10.1039/c2ob26782a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|