1
|
Rosangzuala K, Patlolla RR, Shaikh A, Naik KA, Raveena G, Nemali M, Reddy Mudiam MK, Banoth L. Streamlined Chemo-Enzymatic Synthesis of Molnupiravir via Lipase Catalyst. ACS OMEGA 2024; 9:4423-4428. [PMID: 38313533 PMCID: PMC10831972 DOI: 10.1021/acsomega.3c06872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
An enzymatic approach for the synthesis of Molnupiravir has been developed using immobilized lipase as a biocatalyst. This method involves a concise process of the regioselective esterification of uridine with isobutyric anhydride using Lipase (Addzyme-011). This efficient route gets 97% conversion of uridine 3, with an overall 73% yield of molnupiravir 1 in two steps. The use of inexpensive and easily available lipase makes the synthesis cost-effective and accessible globally, promoting the principles of green chemistry.
Collapse
Affiliation(s)
- Khawlhring Rosangzuala
- Organic
Synthesis and Process Chemistry, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ravinder Reddy Patlolla
- Organic
Synthesis and Process Chemistry, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Asif Shaikh
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
- Department
of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Kethavath Anjali
Priya Naik
- Organic
Synthesis and Process Chemistry, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Gajjala Raveena
- Organic
Synthesis and Process Chemistry, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Manjula Nemali
- Organic
Synthesis and Process Chemistry, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
| | - Mohana Krishna Reddy Mudiam
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
- Department
of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
- Institute
of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurugram, Haryana 122016, India
| | - Linga Banoth
- Organic
Synthesis and Process Chemistry, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
2
|
Patlolla RR, Deepthi P, Raveena G, Rosangzuala K, Tejaswini S, Prakasham RS, Banoth L. Lipase mediated new chemo-enzymatic synthesis of (RS)-, (R)-, and (S)-bunolol. Chirality 2024; 36:e23627. [PMID: 37957841 DOI: 10.1002/chir.23627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023]
Abstract
The β-adrenergic receptor blocking agents are an important class of drug molecules. The present study reports a new chemo and chemo-enzymatic synthetic process for (RS)-, (R)-, and (S)-bunolol, one of the potent β-adrenergic receptor blocker. In chemo-enzymatic process, CAL L4777 lipase was employed for enantioselective kinetic resolution to synthesize the enantiopure (R)-alcohol and (S)-ester from the corresponding racemic alcohol. Thereafter, the corresponding (R)-alcohol and deacylated (S)-ester were treated with tert-butylamine to produce (S)- and (R)-bunolol, respectively. In chemical approach, epichlorohydrin (RS-, R-, and S-) was used as a starting material via respective (RS)-, (S)-, and (R)-glycidyl ether as intermediates for synthesis of enantiomeric (RS)-, (R)-, and (S)-bunolol. In comparison between two approaches, it was found that the chemo-enzymatic process was more effective and resulted in enantiomeric excess of 98% with 35% yield.
Collapse
Affiliation(s)
- Ravinder Reddy Patlolla
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pulivarthi Deepthi
- Fluoro Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Gajjala Raveena
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Khawlhring Rosangzuala
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Somarowthu Tejaswini
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Reddy Shetty Prakasham
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Linga Banoth
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Quantitative assessment of enzymatic processes applied to flavour and fragrance standard compounds using gas chromatography with flame ionisation detection. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1209:123412. [PMID: 35970072 DOI: 10.1016/j.jchromb.2022.123412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
The performance of different enzymes towards the bioprocessing of aroma-related compounds was investigated and a strategy based on GC-FID analysis was developed to facilitate assessment of the stages of characterisation, screening and optimisation, including chiral ratio determination. Characterisation included activity assays (UV-Vis and GC-FID), protein quantification (NanoDrop spectrophotometry) and molar mass estimation (SDS-PAGE electrophoresis). Screening experiments assessed different enzymes, substrates, solvents, acyl donors or mediators. Aroma-related substrates comprised terpene and phenolic compounds. The enzymes tested included the lipases CALA (Sigma-Aldrich), NZ-435, LZ-TLIM, NC-ADL, LZ-CALBL and the laccases NZ-51003 and DL-IIS (all from Novozymes). Among those, NZ-435 and NZ-51003 had the highest activities in the characterisation stage and, along with CALA, achieved conversions above 70% for citronellol (lipases) or 50% for eugenol (laccases) at the screening stage. The lipases had preference for the primary alcohol and laccases for phenolic compounds, among the tested substrates. The transesterification reaction between the lipase CALA and the standards mixture (citronellol, menthol, linalool) was used to demonstrate the optimisation stage, where the best levels of temperature, enzyme and acyl donor concentrations were investigated. Optimum conditions were found to be 37-40 °C, 3-4 mg/mL of enzyme and 58-60% (v/v) vinyl acetate. Additional confirmation experiments using the same terpene standards mixture and citronella oil sample, gave a conversion of > 95% for citronellol after 1 h (for both, standards mixture and sample), and 20% or 74% for menthol after 1 h or 24 h, respectively. None of the tested enzymes demonstrated significant enantioselectivity under the tested conditions. The GC-FID approach demonstrated here was suitable to determine the reaction profiles and chiral ratio variations for biocatalysed reactions with aroma compounds in low complexity samples. Advanced separations will be applied to more complex samples in the future.
Collapse
|
4
|
Kurtanović N, Tomašević N, Matić S, Mitrović MM, Kostić DA, Sabatino M, Antonini L, Ragno R, Mladenović M. Human estrogen receptor α antagonists, part 2: Synthesis driven by rational design, in vitro antiproliferative, and in vivo anticancer evaluation of innovative coumarin-related antiestrogens as breast cancer suppressants. Eur J Med Chem 2022; 227:113869. [PMID: 34710747 DOI: 10.1016/j.ejmech.2021.113869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/04/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
New twelve in silico designed coumarin-based ERα antagonists, namely 3DQ-1a to 3DQ-1е, were synthesized and confirmed as selective ERα antagonists, showing potencies ranging from single-digit nanomolar to picomolar. The hits were confirmed as selective estrogen receptor modulators and validated as antiproliferative agents using MCF-7 breast cancer cell lines exerting from picomolar to low nanomolar potency, at the same time showing no agonistic activity within endometrial cell lines. Their mechanism of action was inspected and revealed to be through the inhibition of the Raf-1/MAPK/ERK signal transduction pathway, preventing hormone-mediated gene expression on either genomic direct or genomic indirect level, and stopping the MCF-7 cells proliferation at G0/G1 phase. In vivo experiments, by means of the per os administration to female Wistar rats with pre-induced breast cancer, distinguished six derivatives, 3DQ-4a, 3DQ-2a, 3DQ-1a, 3DQ-1b, 3DQ-2b, and 3DQ-3b, showing remarkable potency as tumor suppressors endowed with optimal pharmacokinetic profiles and no significant histopathological profiles. The presented data indicate the new compounds as potential candidates to be submitted in clinical trials for breast cancer therapy.
Collapse
Affiliation(s)
- Nezrina Kurtanović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, P.O. Box 60, Serbia
| | - Nevena Tomašević
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, P.O. Box 60, Serbia
| | - Sanja Matić
- University of Kragujevac, Institute for Informational Technologies, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Marina M Mitrović
- University of Kragujevac, Faculty of Medical Sciences, Department of Biochemistry, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Danijela A Kostić
- University of Niš, Department of Chemistry, Faculty of Sciences and Mathematics, Višegradska 33, 18000, Niš, Serbia
| | - Manuela Sabatino
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Lorenzo Antonini
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, P.O. Box 60, Serbia.
| |
Collapse
|
5
|
Atkinson BN, Woodward HL, Sipthorp J, Fish PV. Regioselective and enantiospecific synthesis of the HSP co-inducer arimoclomol from chiral glycidyl derivatives. Org Biomol Chem 2017; 15:9794-9799. [PMID: 29159344 DOI: 10.1039/c7ob02578e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new efficient chiral synthesis of enantiopure arimoclomol (2) is reported from (R)-(-)-glycidyl nosylate (11) with complete retention of chiral integrity. Off-target pharmacology of arimoclomol (2) was evaluated against a representative set of drug targets and showed modest binding to a few kinases. Pharmacokinetic data was generated in vivo in mouse and showed a low brain : plasma ratio. These studies will be helpful towards a better understanding of the PK-PD relationship of 2 in disease models.
Collapse
Affiliation(s)
- Benjamin N Atkinson
- Alzheimer's Research UK UCL Drug Discovery Institute, The Cruciform Building, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Hannah L Woodward
- Alzheimer's Research UK UCL Drug Discovery Institute, The Cruciform Building, University College London, Gower Street, London, WC1E 6BT, UK.
| | - James Sipthorp
- Alzheimer's Research UK UCL Drug Discovery Institute, The Cruciform Building, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Paul V Fish
- Alzheimer's Research UK UCL Drug Discovery Institute, The Cruciform Building, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
6
|
Banoth L, Banerjee U. New chemical and chemo-enzymatic synthesis of (RS)-, (R)-, and (S)-esmolol. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2014.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
7
|
Ghosh S, Bhaumik J, Banoth L, Banesh S, Banerjee UC. Chemoenzymatic Route for the Synthesis of (S
)-Moprolol, a Potential β-Blocker. Chirality 2016; 28:313-8. [DOI: 10.1002/chir.22574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Saptarshi Ghosh
- Department of Pharmaceutical Technology; National Institute of Pharmaceutical Education and Research; Nagar Punjab India
| | - Jayeeta Bhaumik
- Department of Pharmaceutical Technology; National Institute of Pharmaceutical Education and Research; Nagar Punjab India
| | - Linga Banoth
- Department of Pharmaceutical Technology; National Institute of Pharmaceutical Education and Research; Nagar Punjab India
| | - Sooram Banesh
- Department of Pharmaceutical Technology; National Institute of Pharmaceutical Education and Research; Nagar Punjab India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology; National Institute of Pharmaceutical Education and Research; Nagar Punjab India
| |
Collapse
|
8
|
Xu M, Ao Y, Wang S, Peng J, Li J, Zhai M. Efficient adsorption of 1-alkyl-3-methylimidazolium chloride ionic liquids onto modified cellulose microspheres. Carbohydr Polym 2015; 128:171-8. [DOI: 10.1016/j.carbpol.2015.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/27/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
|