1
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
2
|
Fan X, Cao L, Geng L, Ma Y, Wei Y, Wang Y. Polysaccharides as separation media for the separation of proteins, peptides and stereoisomers of amino acids. Int J Biol Macromol 2021; 186:616-638. [PMID: 34242648 DOI: 10.1016/j.ijbiomac.2021.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
Reliable separation of peptides, amino acids and proteins as accurate as possible with the maximum conformation and biological activity is crucial and essential for drug discovery. Polysaccharide, as one of the most abundant natural biopolymers with optical activity on earth, is easy to be functionalized due to lots of hydroxyl groups on glucose units. Over the last few decades, polysaccharide derivatives are gradually employed as effective separation media. The highly-ordered helical structure contributes to complex, diverse molecular recognition ability, allowing polysaccharide derivatives to selectively interact with different analytes. This article reviews the development, application and prospects of polysaccharides as separation media in the separation of proteins, peptides and amino acids in recent years. The chiral molecules mechanism, advantages, limitations, development status and challenges faced by polysaccharides as separation media in molecular recognition are summarized. Meanwhile, the direction of its continued development and future prospects are also discussed.
Collapse
Affiliation(s)
- Xiao Fan
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China
| | - Lilong Cao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China
| | - Linna Geng
- Department of Infrastructure Engineering, The University of Melbourne, Victoria, Australia
| | - Yalu Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China.
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China.
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China.
| |
Collapse
|
3
|
Peluso P, Chankvetadze B. Native and substituted cyclodextrins as chiral selectors for capillary electrophoresis enantioseparations: Structures, features, application, and molecular modeling. Electrophoresis 2021; 42:1676-1708. [PMID: 33956995 DOI: 10.1002/elps.202100053] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
CDs are cyclic oligosaccharides consisting of α-d-glucopyranosyl units linked through 1,4-linkages, which are obtained from enzymatic degradation of starch. The coexistence of hydrophilic and hydrophobic regions in the same structure makes these macrocycles extremely versatile as complexing host with application in food, cosmetics, environmental, agriculture, textile, pharmaceutical, and chemical industries. Due to their inherent chirality, CDs have been also successfully used as chiral selectors in enantioseparation science, in particular, for CE enantioseparations. In the last decades, multidisciplinary approaches based on CE, NMR spectroscopy, X-ray crystallography, microcalorimetry, and molecular modeling have shed light on some aspects of recognition mechanisms underlying enantiodiscrimination. With the ever growing improvement of computer facilities, hardware and software, computational techniques have become a useful tool to model at molecular level the dynamics of diastereomeric associate formation to sample low-energy conformations, the binding energies between the enantiomer and the CD, and to profile noncovalent interactions contributing to the stability of CD/enantiomer association. On this basis, the aim of this review is to provide the reader with a critical overview on the applications of CDs in CE. In particular, the contemporary theory of the electrophoretic technique and the main structural features of CDs are described, with a specific focus on techniques, methods, and approaches to model CE enantioseparations promoted by native and substituted CDs. A systematic compilation of all published literature has not been attempted.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Li Punti, Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia
| |
Collapse
|
4
|
Ma X, Li J, Li X, Feng Z, Yang X, Liu J, Du Y. L-Histidinium Chiral Ionic Liquid Functionalized β-Cyclodextrin as Chiral Selector in Capillary Electrophoresis. J Chromatogr Sci 2021; 59:388-395. [PMID: 33479764 DOI: 10.1093/chromsci/bmaa115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 10/17/2020] [Accepted: 11/06/2020] [Indexed: 11/14/2022]
Abstract
Nowadays, ionic liquids (ILs) functionalized cyclodextrins (CDs) have drawn increasing attention in chiral separation. Herein, a novel β-CD derivative functionalized by L-histidinium IL, mono-6-deoxy-6-L-histidinium-β-cyclodextrin chloride (L-HMCDCl), was synthesized for the first time and utilized for enantioseparation of nefopam and chlorphenamine in capillary electrophoresis. The L-HMCDCl exhibited superior enantioselectivity compared with native β-CD. The effect of some key parameters such as chiral selector concentration, buffer pH and applied voltage on the enantioseparation was investigated in detail. In the interest of the chiral discrimination mechanism and the enhanced enantioselectivity of L-HMCDCl, molecular modeling with AutoDock was employed to study the interaction, which was in good agreement with experimental results.
Collapse
Affiliation(s)
- Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jingtang Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P. R. China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xuan Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Alvira E. Molecular Simulation of the Separation of Some Amino Acid Enantiomers by β-Cyclodextrin in Gas-Phase. Front Chem 2020; 8:823. [PMID: 33102440 PMCID: PMC7505776 DOI: 10.3389/fchem.2020.00823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/04/2020] [Indexed: 11/15/2022] Open
Abstract
The complexes formed by β-cyclodextrin and some amino acids (alanine, valine, leucine, and isoleucine) in vacuo are studied by molecular mechanics and dynamics simulations. These methods have been improved with respect to our previous studies with amino acids, regarding the determination of molecular structures or initial enantiomer dispositions in the molecular dynamics trajectories. The greatest contribution to the interaction energy is from the van der Waals term, although the discrimination between enantiomers is due mainly to the electrostatic contribution. The lowest energy structures of the complexes obtained from molecular mechanics are inclusion complexes in which the carboxylic end of amino acids is pointing toward the narrow (D-) or wide rim (L-) of β-cyclodextrin. The position probability density provided by molecular dynamics also confirms inclusion complex formation, because the guests spend most time inside the cavity of β-cyclodextrin along its axis, with the carboxylic end pointing toward the narrow rim. The L-amino acids are the first eluted enantiomers in all cases and chiral discrimination increases with the size of guests, except leucine, which has the lowest capacity to discriminate. During the simulation, Ala and Val remain in weakly enantioselective regions, while Leu and Ile stay in zones with great chiral selectivity.
Collapse
Affiliation(s)
- Elena Alvira
- Departamento de Física, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
6
|
Alvira E. Molecular Simulation of the Separation of Isoleucine Enantiomers by β-Cyclodextrin. Molecules 2019; 24:molecules24061021. [PMID: 30875754 PMCID: PMC6470920 DOI: 10.3390/molecules24061021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022] Open
Abstract
Molecular mechanics and dynamics simulations were carried out to study the capacity of isoleucine enantiomers to form inclusion complexes with β⁻cyclodextrin, and to be discriminated by this chiral compound, in vacuo and with different solvents. Solvents were characterized not only by the value of dielectric constant ε in the Coulombic interaction energy, but also by the neutral and zwitterion configurations of isoleucine. Whereas the discrimination between the enantiomers for ε ≤ 2 is due to the electrostatic contribution, these differences are mainly due to the Lennard-Jones potential for ε > 2. The most enantioselective regions are located near the cavity walls, independently of the solvent. D-Ile is more stable than L-Ile in broader regions in vacuo, but L-Ile presents more stable locations with water. Isoleucine can form inclusion complexes with β⁻cyclodextrin in vacuo and with different solvents. Two probable configurations are deduced from the molecular dynamics simulation, in which the guest is always inside the cavity and with the carboxylic end of the amino acid oriented towards either rim of β⁻CD. In the simulation, the enantiomers preferentially occupy regions with greater chiral discrimination. The first eluted enantiomer in vacuo and with different solvents is L-Ile, independently of the solvent polarity.
Collapse
Affiliation(s)
- Elena Alvira
- Departamento de Física, Universidad de La Laguna, 38202 La Laguna, Tenerife, Spain.
| |
Collapse
|
7
|
Peluso P, Dessì A, Dallocchio R, Mamane V, Cossu S. Recent studies of docking and molecular dynamics simulation for liquid-phase enantioseparations. Electrophoresis 2019; 40:1881-1896. [PMID: 30710444 DOI: 10.1002/elps.201800493] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022]
Abstract
Liquid-phase enantioseparations have been fruitfully applied in several fields of science. Various applications along with technical and theoretical advancements contributed to increase significantly the knowledge in this area. Nowadays, chromatographic techniques, in particular HPLC on chiral stationary phase, are considered as mature technologies. In the last thirty years, CE has been also recognized as one of the most versatile technique for analytical scale separation of enantiomers. Despite the huge number of papers published in these fields, understanding mechanistic details of the stereoselective interaction between selector and selectand is still an open issue, in particular for high-molecular weight chiral selectors like polysaccharide derivatives. With the ever growing improvement of computer facilities, hardware and software, computational techniques have become a basic tool in enantioseparation science. In this field, molecular docking and dynamics simulations proved to be extremely adaptable to model and visualize at molecular level the spatial proximity of interacting molecules in order to predict retention, selectivity, enantiomer elution order, and profile noncovalent interaction patterns underlying the recognition process. On this basis, topics and trends in using docking and molecular dynamics as theoretical complement of experimental LC and CE chiral separations are described herein. The basic concepts of these computational strategies and seminal studies performed over time are presented, with a specific focus on literature published between 2015 and November 2018. A systematic compilation of all published literature has not been attempted.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB CNR - Sede Secondaria di Sassari, Sassari, Sardegna, Italy
| | - Alessandro Dessì
- Istituto di Chimica Biomolecolare ICB CNR - Sede Secondaria di Sassari, Sassari, Sardegna, Italy
| | - Roberto Dallocchio
- Istituto di Chimica Biomolecolare ICB CNR - Sede Secondaria di Sassari, Sassari, Sardegna, Italy
| | - Victor Mamane
- Institut de Chimie de Strasbourg, Strasbourg, Alsace, France
| | - Sergio Cossu
- Dipartimento di Scienze Molecolari e Nanosistemi DSMN, Università Ca' Foscari Venezia, Mestre Venezia, Veneto, Italy
| |
Collapse
|
8
|
Abstract
Stereospecific recognition of chiral molecules plays an important role in nature as the basis of the interaction of chiral bioactive compounds with the chiral target structures. In separation sciences such as chromatographic and capillary electromigration techniques, interactions between chiral analytes and chiral selectors, i.e., the formation of transient diastereomeric complexes in thermodynamic equilibria, are the basis for chiral separations. Due to the large structural variety of chiral selectors, different structural features contribute to the overall chiral recognition process. This introductory chapter briefly summarizes the present understanding of the structural enantioselective recognition processes for various types of chiral selectors.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical Chemistry, University of Jena, Jena, Germany.
| |
Collapse
|
9
|
Alvira E. Theoretical Study of the β-Cyclodextrin Inclusion Complex Formation of Eugenol in Water. Molecules 2018; 23:molecules23040928. [PMID: 29673173 PMCID: PMC6017285 DOI: 10.3390/molecules23040928] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 12/25/2022] Open
Abstract
The interaction between eugenol and β-cyclodextrin in the presence of water is studied by molecular mechanics and dynamics simulations. A force field model is used in molecular mechanics to determine the interaction energy and the complex configuration at the absolute minimum. The van der Waals term is the main contribution to the total energy, and so directly determines the configuration of the inclusion complex. The formation of inclusion complexes is simulated by molecular dynamics, in which their configurations are deduced from the position probability density that represents the preferred location and orientation of the guest in the simulation. When eugenol approaches from the rims of β-cyclodextrin, it tends to enter the cavity, remain inside for a short period and then exit from it. The guest tends to include the phenyl ring inside the cavity in the most probable configurations. Two inclusion complex configurations are proposed, each with the hydroxyl and methoxyl groups pointing towards one different rim of β-cyclodextrin. The initial guest orientation is the main factor determining these configurations. The model presented in this study reproduces the experimental findings on inclusion complex formation and proposes two possible complex configurations, one previously suggested by different authors.
Collapse
Affiliation(s)
- Elena Alvira
- Department of Physics, University of La Laguna, 38202 La Laguna, Tenerife, Spain.
| |
Collapse
|
10
|
Munawar H, Smolinska-Kempisty K, Cruz AG, Canfarotta F, Piletska E, Karim K, Piletsky SA. Molecularly imprinted polymer nanoparticle-based assay (MINA): application for fumonisin B1 determination. Analyst 2018; 143:3481-3488. [DOI: 10.1039/c8an00322j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enzyme-linked immunosorbent assay (ELISA) has been used as a standard tool for monitoring food and animal feed contamination from the carcinogenic fumonisin B1 (FB1).
Collapse
Affiliation(s)
- Hasim Munawar
- Department of Chemistry
- College of Science and Engineering
- University of Leicester
- Leicester
- UK
| | | | - Alvaro Garcia Cruz
- Department of Chemistry
- College of Science and Engineering
- University of Leicester
- Leicester
- UK
| | - Francesco Canfarotta
- Department of Chemistry
- College of Science and Engineering
- University of Leicester
- Leicester
- UK
| | - Elena Piletska
- Department of Chemistry
- College of Science and Engineering
- University of Leicester
- Leicester
- UK
| | - Khalku Karim
- Department of Chemistry
- College of Science and Engineering
- University of Leicester
- Leicester
- UK
| | - Sergey A. Piletsky
- Department of Chemistry
- College of Science and Engineering
- University of Leicester
- Leicester
- UK
| |
Collapse
|
11
|
Current trends in molecular modeling methods applied to the study of cyclodextrin complexes. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0763-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Li X, Yao X, Xiao Y, Wang Y. Enantioseparation of single layer native cyclodextrin chiral stationary phases: Effect of cyclodextrin orientation and a modeling study. Anal Chim Acta 2017; 990:174-184. [DOI: 10.1016/j.aca.2017.07.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/03/2017] [Accepted: 07/08/2017] [Indexed: 10/19/2022]
|
13
|
Alvira E. Influence of solvent polarity on the separation of leucine enantiomers by β-cyclodextrin: a molecular mechanics and dynamics simulation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Alvira E. Influence of valine enantiomer configuration on the molecular dynamics simulation of their separation by β-cyclodextrin. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Yang X, Du Y, Feng Z, Liu Z, Li J. Establishment and molecular modeling study of maltodextrin-based synergistic enantioseparation systems with two new hydroxy acid chiral ionic liquids as additives in capillary electrophoresis. J Chromatogr A 2017. [PMID: 28641834 DOI: 10.1016/j.chroma.2017.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Discovering more superior performance of ionic liquids for the separation science has triggered increasing interest. In this work, two new Hydroxy acid-based chiral ionic liquids (CILs) (tertramethylammonium-d-pantothenate (TMA-d-PAN), tertramethylammonium-d-quinate (TMA-d-QUI)) were designed and first used as additives to establish the maltodextrin-based synergistic systems for enantioseparation in capillary electrophoresis (CE). Compared to traditional single maltodextrin chiral separation system, significantly improved separations of all tested drugs in the CIL/Maltodextrin synergistic systems were obtained. Some parameters (CIL concentration, maltodextrin concentration, buffer pH, and applied voltage) in the TMA-d-PAN/Maltodextrin synergistic system have been examined and optimized for analytes. The molecular docking software AutoDock was applied to simulate the recognition process and surmise feasible resolution mechanism in the Maltodextrin/CILs synergistic systems, which has certain guiding value.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yingxiang Du
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, PR China; Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Zijie Feng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zongran Liu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jingtang Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
16
|
Shahangi F, Najafi Chermahini A, Farrokhpour H, Dabbagh HA. Enantiomeric discrimination of leucine enantiomers by nanotubular cyclic peptides: DFT and ONIOM calculation of the absorption spectra of guested enantiomers. J INCL PHENOM MACRO 2016. [DOI: 10.1007/s10847-016-0632-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Scriba GKE. Chiral recognition in separation science - an update. J Chromatogr A 2016; 1467:56-78. [PMID: 27318504 DOI: 10.1016/j.chroma.2016.05.061] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022]
Abstract
Stereospecific recognition of chiral molecules is an important issue in various aspects of life sciences and chemistry including analytical separation sciences. The basis of analytical enantioseparations is the formation of transient diastereomeric complexes driven by hydrogen bonds or ionic, ion-dipole, dipole-dipole, van der Waals as well as π-π interactions. Recently, halogen bonding was also described to contribute to selector-selectand complexation. Besides structure-separation relationships, spectroscopic techniques, especially NMR spectroscopy, as well as X-ray crystallography have contributed to the understanding of the structure of the diastereomeric complexes. Molecular modeling has provided the tool for the visualization of the structures. The present review highlights recent contributions to the understanding of the binding mechanism between chiral selectors and selectands in analytical enantioseparations dating between 2012 and early 2016 including polysaccharide derivatives, cyclodextrins, cyclofructans, macrocyclic glycopeptides, proteins, brush-type selectors, ion-exchangers, polymers, crown ethers, ligand-exchangers, molecular micelles, ionic liquids, metal-organic frameworks and nucleotide-derived selectors. A systematic compilation of all published literature on the various chiral selectors has not been attempted.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Friedrich Schiller University Jena, Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
18
|
Alvira E. Theoretical study of the separation of valine enantiomers by β-cyclodextrin with different solvents: a molecular mechanics and dynamics simulation. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Zor E, Bingol H, Ramanaviciene A, Ramanavicius A, Ersoz M. An electrochemical and computational study for discrimination ofd- andl-cystine by reduced graphene oxide/β-cyclodextrin. Analyst 2015; 140:313-21. [DOI: 10.1039/c4an01751j] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study indicates the applicability of two different techniques (electrochemical and computational study) for the discrimination of cystine enantiomers (d- andl-cystine) by reduced graphene oxide/β-cyclodextrin (rGO/β-CD) hybrid material.
Collapse
Affiliation(s)
- Erhan Zor
- Selcuk University
- Institute of Science
- Department of Chemistry
- Konya
- Turkey
| | - Haluk Bingol
- Necmettin Erbakan University
- A.K. Education Faculty
- Chemistry Department
- Konya
- Turkey
| | - Almira Ramanaviciene
- Vilnius University
- Faculty of Chemistry
- Centre of Nanotechnology and Materials Science
- Vilnius
- Lithuania
| | - Arunas Ramanavicius
- Vilnius University
- Faculty of Chemistry
- Centre of Nanotechnology and Materials Science
- Vilnius
- Lithuania
| | - Mustafa Ersoz
- Selcuk University
- Advanced Technology Research and Application Center
- Konya
- Turkey
| |
Collapse
|
20
|
Horn AHC. A consistent force field parameter set for zwitterionic amino acid residues. J Mol Model 2014; 20:2478. [PMID: 25338816 DOI: 10.1007/s00894-014-2478-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 09/21/2014] [Indexed: 12/20/2022]
Abstract
Isolated amino acids play an important role in biochemistry and are therefore an interesting object of study. Atomistic molecular dynamics (MD) simulations can provide a high-resolution picture of the dynamic features of these species, especially in their biological environment. Unfortunately, most standard force field packages lack libraries for isolated amino acids in their zwitterionic form. Although several studies have used ad-hoc parameterizations for single amino acids, a consistent force-field parameter set for these molecules is still missing. Here, we present such a parameter library derived from the widely used parm99SB set from the AMBER program package. The parameter derivation for all 20 proteinogenic amino acids transparently followed established procedures with histidine treated in three different protonation states. All amino acids were subjected to MD simulations in four different forms for comparison: zwitterionic, N-teminally capped with acetyl, C-terminally capped with N-methyl, and capped at both termini. Simulation results show similarities between the different forms. Five zwitterionic amino acids-arginine, glutamate, glycine, phenylalanine, leucine-were simulated in a protein environment. Proteins and ligands generally retained their initial structure. The new parameter set will thus facilitate future atomistic simulations of these species.
Collapse
Affiliation(s)
- Anselm H C Horn
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstr. 17, 91054, Erlangen, Germany,
| |
Collapse
|
21
|
Li W, Zhao L, Zhang H, Chen X, Chen S, Zhu Z, Hong Z, Chai Y. Enantioseparation of new triadimenol antifungal active compounds by electrokinetic chromatography and molecular modeling study of chiral recognition mechanisms. Electrophoresis 2014; 35:2855-62. [PMID: 24615979 DOI: 10.1002/elps.201300607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Wuhong Li
- School of Pharmacy; Second Military Medical University; Shanghai China
| | - Liang Zhao
- Department of Pharmacy; Eastern Hepatobiliary Surgery Hospital; Second Military Medical University; Shanghai China
| | - Hai Zhang
- Department of Pharmacy; Eastern Hepatobiliary Surgery Hospital; Second Military Medical University; Shanghai China
| | - Xiaofei Chen
- School of Pharmacy; Second Military Medical University; Shanghai China
| | - Si Chen
- School of Pharmacy; Second Military Medical University; Shanghai China
| | - Zhenyu Zhu
- School of Pharmacy; Second Military Medical University; Shanghai China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research; Shanghai China
| | - Zhanying Hong
- School of Pharmacy; Second Military Medical University; Shanghai China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research; Shanghai China
| | - Yifeng Chai
- School of Pharmacy; Second Military Medical University; Shanghai China
| |
Collapse
|