1
|
Jaswal AS, Elangovan R, Mishra S. Synthesis and molecular characterization of levan produced by immobilized Microbacterium paraoxydans. J Biotechnol 2023; 373:63-72. [PMID: 37451319 DOI: 10.1016/j.jbiotec.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
In this study, we report high molecular weight (HMW) levan production by whole cells of Microbacterium paraoxydans, previously reported to be a good producer of fructooligosaccharides. Structural analysis of the extracellularly produced fructan indicated the glycosidic bonds between the adjacent fructose to be of β-(2, 6) linkage with over 90% of the fructan to have molecular weight around 2 × 108 Da and 10% with a molecular weight of ∼20 kDa. Immobilization of the cells in Ca-alginate led to the production of 44.6 g/L levan with a yield of 0.29 g/g sucrose consumed. Factors affecting the conversion rate were identified by One-Factor-At-a-Time (OFAT) analysis and the combination of these (initial sucrose concentration of 400 g/L, 100 mM buffer pH 7, the temperature of 37 °C and 20 mM CaCl2) led to the production of ∼129 g/L of levan with a yield of ∼0.41 g/g sucrose consumed and volumetric productivity of 1.8 g/L/h.
Collapse
Affiliation(s)
- Avijeet Singh Jaswal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India
| | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India.
| |
Collapse
|
2
|
Schwaiger KN, Voit A, Wiltschi B, Nidetzky B. Engineering cascade biocatalysis in whole cells for bottom-up synthesis of cello-oligosaccharides: flux control over three enzymatic steps enables soluble production. Microb Cell Fact 2022; 21:61. [PMID: 35397553 PMCID: PMC8994397 DOI: 10.1186/s12934-022-01781-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/24/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Soluble cello-oligosaccharides (COS, β-1,4-D-gluco-oligosaccharides with degree of polymerization DP 2-6) have been receiving increased attention in different industrial sectors, from food and feed to cosmetics. Development of large-scale COS applications requires cost-effective technologies for their production. Cascade biocatalysis by the three enzymes sucrose-, cellobiose- and cellodextrin phosphorylase is promising because it enables bottom-up synthesis of COS from expedient substrates such as sucrose and glucose. A whole-cell-derived catalyst that incorporates the required enzyme activities from suitable co-expression would represent an important step towards making the cascade reaction fit for production. Multi-enzyme co-expression to reach distinct activity ratios is challenging in general, but it requires special emphasis for the synthesis of COS. Only a finely tuned balance between formation and elongation of the oligosaccharide precursor cellobiose results in the desired COS. RESULTS Here, we show the integration of cellodextrin phosphorylase into a cellobiose-producing whole-cell catalyst. We arranged the co-expression cassettes such that their expression levels were upregulated. The most effective strategy involved a custom vector design that placed the coding sequences for cellobiose phosphorylase (CbP), cellodextrin phosphorylase (CdP) and sucrose phosphorylase (ScP) in a tricistron in the given order. The expression of the tricistron was controlled by the strong T7lacO promoter and strong ribosome binding sites (RBS) for each open reading frame. The resulting whole-cell catalyst achieved a recombinant protein yield of 46% of total intracellular protein in an optimal ScP:CbP:CdP activity ratio of 10:2.9:0.6, yielding an overall activity of 315 U/g dry cell mass. We demonstrated that bioconversion catalyzed by a semi-permeabilized whole-cell catalyst achieved an industrial relevant COS product titer of 125 g/L and a space-time yield of 20 g/L/h. With CbP as the cellobiose providing enzyme, flux into higher oligosaccharides (DP ≥ 6) was prevented and no insoluble products were formed after 6 h of conversion. CONCLUSIONS A whole-cell catalyst for COS biosynthesis was developed. The coordinated co-expression of the three biosynthesis enzymes balanced the activities of the individual enzymes such that COS production was maximized. With the flux control set to minimize the share of insolubles in the product, the whole-cell synthesis shows a performance with respect to yield, productivity, product concentration and quality that is promising for industrial production.
Collapse
Affiliation(s)
- Katharina N. Schwaiger
- grid.432147.70000 0004 0591 4434ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Alena Voit
- grid.432147.70000 0004 0591 4434ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Birgit Wiltschi
- grid.432147.70000 0004 0591 4434ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Bernd Nidetzky
- grid.432147.70000 0004 0591 4434ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria ,grid.410413.30000 0001 2294 748XInstitute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| |
Collapse
|
3
|
Liu J, Cheng J, Huang M, Shen C, Xu K, Xiao Y, Pan W, Fang Z. Identification of an Invertase With High Specific Activity for Raffinose Hydrolysis and Its Application in Soymilk Treatment. Front Microbiol 2021; 12:646801. [PMID: 33897661 PMCID: PMC8060482 DOI: 10.3389/fmicb.2021.646801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
The hydrolyzation of raffinose into melibiose by using invertases under mild conditions improves the nutritional value of soybean products. However, this strategy has received little attention because a suitable invertase remains lacking. In this study, a novel invertase named InvDz13 was screened and purified from Microbacterium trichothecenolyticum and characterized. InvDz13 was one of the invertases with the highest specific activity toward raffinose. Specifically, it had a specific activity of 229 U/mg toward raffinose at pH 6.5 and 35°C. InvDz13 retained more than 80% of its maximum activity at pH 5.5–7.5 and 25–40°C and was resistant to or stimulated by most cations that presented in soymilk. In soymilk treated with InvDz13 under mild conditions, melibiose concentration increased from 3.1 ± 0.2 to 6.1 ± 0.1 mM due to raffinose hydrolyzation by InvDz13. Furthermore, the prebiotic property of InvDz13-treated soymilk was investigated via in vitro fermentation by human gut microbiota. Results showed that InvDz13 treatment increased the proportion of the beneficial bacteria Bifidobacterium and Lactobacillus by 1.6- and 3.7-fold, respectively. By contrast, the populations of Escherichia and Collinsella decreased by 1.8- and 11.7-fold, respectively. Thus, our results proved that the enzymatic hydrolysis of raffinose in soymilk with InvDz13 was practicable and might be an alternative approach to improving the nutritional value of soymilk.
Collapse
Affiliation(s)
- Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Jing Cheng
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Min Huang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Chen Shen
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Ke Xu
- Anhui RenRenFu Bean Co., Ltd., Hefei, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Wenjuan Pan
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| |
Collapse
|
4
|
Kim HJ, Lee AW, Park C. Toxicological evaluation of Microbacterium foliorum SYG27B-MF. Regul Toxicol Pharmacol 2018; 100:16-24. [PMID: 30308225 DOI: 10.1016/j.yrtph.2018.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/23/2018] [Accepted: 09/22/2018] [Indexed: 10/28/2022]
Abstract
Microbacterium foliorum is a naturally occurring bacteria in cruciferous vegetables and ripened cheese. The safety of M. foliorum SYG27B-MF has been assessed in both acute and subchronic studies and a battery of mutagenicity and clastogenicity tests. In a single dose acute study, the LD50 of M. foliorum SYG27B-MF was greater than 3 g/kg bw or 5.1 × 1016 colony forming unit (CFU)/kg bw, the highest dose tested. In a 90-day subchronic toxicity study in 80 Sprague-Dawley rats, no animals died and there were no treatment-related abnormalities at doses of 0, 500, 1000, or 2000 mg/kg bw. In a 90-day repeated toxicity test, the no-observed-adverse-effect level (NOAEL) M. foliorum SYG27B-MF was 2000 mg/kg/day or 3.4 × 1016 CFU/kg bw/day, the highest level tested. A mutagenicity study using reverse bacterial mutation tests and a genotoxicity study employing cultured hamster ovarian fibroblasts (CHO-K1) cell showed that M. foliorum SYG27B-MF was not mutagenic or clastogenic in the presence or absence metabolic activation. In an in vivo mouse micronucleus assay, M. foliorum SYG27B-MF did not induce did not induce micronuclei formation in the bone marrow cells of mice, indicating that it is non-clastogenic. The results from these studies support the safety of M. foliorum SYG27B-MF for use as a production organism for human food ingredients.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Samyang Corp, Sungnam-si, Kyunggi-do, Republic of Korea.
| | | | - Chongjin Park
- Samyang Corp, Sungnam-si, Kyunggi-do, Republic of Korea
| |
Collapse
|
5
|
Nobre C, Alves Filho E, Fernandes F, Brito E, Rodrigues S, Teixeira J, Rodrigues L. Production of fructo-oligosaccharides by Aspergillus ibericus and their chemical characterization. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|