1
|
Maram L, Parigi RR, Das B. Chiral approach to total synthesis of phytotoxic and related nonenolides: (Z)-isomer of (6S,7R,9R)-6,7-dihydroxy-9-propylnon-4-eno-9-lactone, herbarumin-III and their C-9 epimers. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.09.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2
|
Abstract
A highly convergent, enantioselective total synthesis of the potent antitumor agent apoptolidin A has been completed. The key transformations include highly selective glycosylations to attach the C27 disaccharide and the C9 6'-deoxy-l-glucose, a cross-metathesis to incorporate the C1-C10 trienoate unit, and a Yamaguchi macrolactonization to complete the macrocycle. Twelve stereocenters in the polypropionate segments and sugar units were established through diastereoselective chlorotitanium enolate aldol reactions.
Collapse
Affiliation(s)
- Michael T Crimmins
- Venable and Kenan Laboratories of Chemistry, Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
| | | | | | | |
Collapse
|
3
|
Ghidu VP, Wang J, Wu B, Liu Q, Jacobs A, Marnett LJ, Sulikowski GA. Synthesis and evaluation of the cytotoxicity of apoptolidinones A and D. J Org Chem 2008; 73:4949-55. [PMID: 18543990 PMCID: PMC2572754 DOI: 10.1021/jo800545r] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Indexed: 11/28/2022]
Abstract
Apoptolidins A-D are microbial secondary metabolites shown to be selectively cytotoxic against several cancer cell lines and noncytotoxic against normal cells. Total syntheses of apoptolidinones A and D are reported. The efficient synthetic strategy leading to the apoptolidinones features construction of the common 20-membered macrolactone by an intramolecular Suzuki reaction and stereocontrolled aldol reactions establishing the C19/C20 and C22/C23 stereocenters. In contrast to apoptolidin A, the aglycones apoptolidinone A and D were shown to be noncytotoxic when evaluated against human lung cancer cells (H292).
Collapse
Affiliation(s)
- Victor P Ghidu
- Department of Chemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235-1822, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
At low temperature and in the presence of an acid catalyst, SO2 adds to 1,3-dienes equilibrating with the corresponding 3,6-dihydro-1,2-oxathiin-2-oxides (sultines). These compounds are unstable above -60 °C and equilibrate with the more stable 2,5-dihydrothiophene 1,1-dioxides (sulfolenes). The hetero-Diels-Alder additions of SO2 are suprafacial and follow the Alder endo rule. The sultines derived from 1-oxy-substituted and 1,3-dioxy-disubstituted 1,3-dienes cannot be observed at -100 °C but are believed to be formed faster than the corresponding sulfolenes. In the presence of acid catalysts, the 6-oxy-substituted sultines equilibrate with zwitterionic species that react with electron-rich alkenes such as enoxysilanes and allylsilanes, generating β,γ-unsaturated silyl sulfinates that can be desilylated and desulfinylated to generate polypropionate fragments containing up to three contiguous stereogenic centers and an (E)-alkene unit. Alternatively, the silyl sulfinates can be reacted with electrophiles to generate polyfunctional sulfones (one-pot, four-component synthesis of sulfones), or oxidized into sulfonyl chlorides and reacted with amines, then realizing a one-pot, four-component synthesis of polyfunctional sulfonamides. Using enantiomerically enriched dienes such as 1-[(R)- or 1-(S)-phenylethyloxy]-2-methyl-(E,E)-penta-1,3-dien-3-yl isobutyrate, derived from inexpensive (R)- or (S)-1-phenylethanol, enantiomerically enriched stereotriads are obtained in one-pot operations. The latter are ready for further chain elongation. This has permitted the development of expeditious total asymmetric syntheses of important natural products of biological interest such as the baconipyrones, rifamycin S, and apoptolidin A.
Collapse
|
5
|
Craita C, Didier C, Vogel P. Short synthesis of the C16-C28 polyketide fragment of apoptolidin A aglycone. Chem Commun (Camb) 2007:2411-3. [PMID: 17844763 DOI: 10.1039/b701293d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Starting from (E,E)-1-[(1R)-(phenylethyl)oxy]-2-methylpenta-1,3-diene and triethylsilyl enol ether of butanone rapid access to Koert's advanced C10-C28 polyketide fragment of apoptolidin A is now possible.
Collapse
Affiliation(s)
- Cotinica Craita
- Institute of Pharmaceutical Sciences, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
6
|
Affiliation(s)
- Marco Lombardo
- Dipartimento di Chimica "G. Ciamician", Università degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy.
| | | |
Collapse
|
7
|
Wehlan H, Dauber M, Fernaud MTM, Schuppan J, Keiper S, Mahrwald R, Garcia MEJ, Koert U. Apoptolidin A: total synthesis and partially glycosylated analogues. Chemistry 2007; 12:7378-97. [PMID: 16865757 DOI: 10.1002/chem.200600462] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The total synthesis of apoptolidin A is described employing an early glycosylation strategy. Strategic disconnections were chosen between C11-C12 (cross-coupling) and C19O-C1 (macrocyclization). The cis-selective glycosylation at C9-OH was achieved with the new SIBA protective group at O2/O3 of the L-glucose residue. Auxiliary substitutents at the 2-position of the 2-deoxy sugars were applied to form selectively the glycosidic linkages of the C27 disaccharide. The cross-coupling of the glycosylated northern half with the glycosylated southern half was achieved with CuI-thiophene carboxylate. The macrocyclization of a trihydroxy carboxylic acid produced the 20-membered macrolide selectively. H2SiF6 was suitable for the final deprotection of the silyl ethers and the conversion of the C21 methylketal into the hemiketal. The synthetic flexibility of the approach was proven by the synthesis of some glycovariants.
Collapse
Affiliation(s)
- Hermut Wehlan
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kim Y, Fuchs PL. Lactol-directed osmylation. Stereodivergent synthesis of four C-19,20 apoptolidin diols from a single allylic hemiacetal. Org Lett 2007; 9:2445-8. [PMID: 17539652 DOI: 10.1021/ol0707564] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthetic approach to prepare four Apoptolidin C-19,20 diastereomeric diol derivatives was developed. Two diastereomers were obtained from the (Z)-form, which is converted to the (E)-form, followed by dihydroxylation to deliver two more diastereomers. The (E)-allylic hemiacetal and methoxyacetal showed opposite diastereoselectivity.
Collapse
Affiliation(s)
- Youngsoon Kim
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
9
|
Schuppan J, Wehlan H, Keiper S, Koert U. Apoptolidinone A: Synthesis of the Apoptolidin A Aglycone. Chemistry 2006; 12:7364-77. [PMID: 16865756 DOI: 10.1002/chem.200600461] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An efficient stereocontrolled synthesis of apoptolidinone A, the aglycone of apoptolidin A is described. The synthetic strategy relies on a cross coupling between C11/C12 of a northern half (C1-C11) and a southern part (C12-C28) followed by a ring-size selective macrolactonization. Key steps for the introduction of the southern half stereocenters are a stereoselective aldol reaction, a substrate controlled dihydroxylation and a chelation-controlled Grignard/aldehyde addition. The conjugated triene of the northern half was built up successively by E-selective Wittig reactions. L-Malic acid was chosen as the chiral pool source for the C8/C9 stereocenters. The final cleavage of the silyl ethers and the conversion of the C21 methyl ketal into the hemiketal was achieved by HF.pyridine.
Collapse
Affiliation(s)
- Julia Schuppan
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
10
|
Wender PA, Jankowski OD, Longcore K, Tabet EA, Seto H, Tomikawa T. Correlation of F0F1-ATPase inhibition and antiproliferative activity of apoptolidin analogues. Org Lett 2006; 8:589-92. [PMID: 16468718 PMCID: PMC2533578 DOI: 10.1021/ol052800q] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[structure: see text] Apoptolidin (1) exhibits potent and highly selective apoptosis inducing activity against sensitive cancer cell lines and is hypothesized to act by inhibition of mitochondrial F(0)F(1)-ATP synthase. A series of apoptolidin derivatives, including a new intermolecular Diels-Alder adduct, were analyzed for antiproliferative activity in E1A-transformed rat fibroblasts. Potent F(0)F(1)-ATPase inhibition was not a sufficient determinant of antiproliferative activity for several analogues, suggesting the existence of a secondary biological target or more complex mode of action for apoptolidin.
Collapse
Affiliation(s)
- Paul A Wender
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Daniel PT, Koert U, Schuppan J. Apoptolidin: Induction of Apoptosis by a Natural Product. Angew Chem Int Ed Engl 2006; 45:872-93. [PMID: 16404760 DOI: 10.1002/anie.200502698] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Apoptolidin is a natural product that selectively induces apoptosis in several cancer cell lines. Apoptosis, programmed cell death, is a biological key pathway for regulating homeostasis and morphogenesis. Apoptotic misregulations are connected with several diseases, in particular cancer. The extrinsic way to apoptosis leads through death ligands and death receptors to the activiation of the caspase cascade, which results in proteolytic degradation of the cell architecture. The intrinsic pathway transmits signals of internal cellular damage to the mitochondrion, which loses its structural integrity, and forms an apoptosome that initiates the caspase cascade. Compounds which regulate apoptosis are of high medical significance. Many natural products regulate apoptotic pathways, and apoptolidin is one of them. The known synthetic routes to apoptolidin are described and compared in this Review. Selected further natural products which regulate apoptosis are introduced briefly.
Collapse
Affiliation(s)
- Peter T Daniel
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Humboldt University of Berlin, Germany
| | | | | |
Collapse
|
12
|
Daniel PT, Koert U, Schuppan J. Apoptolidin: Induktion von Apoptose durch einen Naturstoff. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502698] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Wu B, Liu Q, Jin B, Qu T, Sulikowski GA. Studies on the Synthesis of Apoptolidin: Progress on the Stereocontrolled Assembly of the Pseudo Aglycone of Apoptolidin. European J Org Chem 2006. [DOI: 10.1002/ejoc.200500632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Crimmins MT, Christie HS, Chaudhary K, Long A. Enantioselective Synthesis of Apoptolidinone: Exploiting the Versatility of Thiazolidinethione Chiral Auxiliaries. J Am Chem Soc 2005; 127:13810-2. [PMID: 16201800 DOI: 10.1021/ja0549289] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient, enantioselective synthesis of apoptolidinone has been completed, demonstrating the versatility of thiazolidinethione auxiliaries. Three propionate aldol additions and two asymmetric glycolate alkylations function to establish 8 of the 12 stereogenic carbon centers. A cross-metathesis reaction is utilized to assemble the C1-C10 trieneoate fragment and the C11-C28 polypropionate region of the molecule.
Collapse
Affiliation(s)
- Michael T Crimmins
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
[structure: see text] The de novo synthesis of the C9 and C27 sugar subunits (2) and (3), respectively, of the potent antitumor agent, apoptolidin, has been accomplished. A titanium tetrachloride-mediated asymmetric anti glycolate aldol addition was utilized to establish the 4' and 5' stereogenic centers of each of the three monosaccharides. Elaboration of the aldol adducts efficiently provided the three sugar units. A beta-selective glycosidation completed the construction of the C27 disaccharide.
Collapse
Affiliation(s)
- Michael T Crimmins
- Venable and Kenan Laboratories of Chemistry, Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
| | | |
Collapse
|