1
|
Sun Q, Xu Y, Yang L, Zheng CL, Wang G, Wang HB, Fang Z, Wang CS, Guo K. Direct C-H Sulfuration: Synthesis of Disulfides, Dithiocarbamates, Xanthates, Thiocarbamates and Thiocarbonates. Chem Asian J 2024; 19:e202400124. [PMID: 38421239 DOI: 10.1002/asia.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
In light of the important biological activities and widespread applications of organic disulfides, dithiocarbamates, xanthates, thiocarbamates and thiocarbonates, the continual persuit of efficient methods for their synthesis remains crucial. Traditionally, the preparation of such compounds heavily relied on intricate multi-step syntheses and the use of highly prefunctionalized starting materials. Over the past two decades, the direct sulfuration of C-H bonds has evolved into a straightforward, atom- and step-economical method for the preparation of organosulfur compounds. This review aims to provide an up-to-date discussion on direct C-H disulfuration, dithiocarbamation, xanthylation, thiocarbamation and thiocarbonation, with a special focus on describing scopes and mechanistic aspects. Moreover, the synthetic limitations and applications of some of these methodologies, along with the key unsolved challenges to be addressed in the future are also discussed. The majority of examples covered in this review are accomplished via metal-free, photochemical or electrochemical approaches, which are in alignment with the overraching objectives of green and sustainable chemistry. This comprehensive review aims to consolidate recent advancements, providing valuable insights into the dynamic landscape of efficient and sustainable synthetic strategies for these crucial classes of organosulfur compounds.
Collapse
Affiliation(s)
- Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Liu Yang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Hai-Bo Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Zheng Fang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Kai Guo
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| |
Collapse
|
2
|
A Brief Review: Advancement in the Synthesis of Amine through the Leuckart Reaction. REACTIONS 2023. [DOI: 10.3390/reactions4010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This review presents a summary of reactions that take place during the “Leuckart-type reaction”. The significance of, as well as recent advancements in, the synthesis of amines through simple and inexpensive methods using readily available raw materials is discussed. This review includes all catalytic and noncatalytic reactions that involve the Leuckart method. Recent studies have shown that at least a quarter of C–N bond-forming reactions in the pharmaceutical industry are occur with the support of reductive amination. Recently, experimental conditions have achieved excellent yields. The “Leuckart-type reaction” is technically associated with Eschweiler–Clarke methylation. Compounds are grouped in accordance with the precept of action. This includes drugs affecting the central nervous system, cardiovascular system and gastrointestinal tract; anticancer drugs, antibiotics, antiviral and antifungal drugs; drugs affecting anxiety; convulsant, biotic, and HIV drugs; and antidiabetic drugs. Therefore, this review supports the development of the Leuckart-type preparation of nitrogenous compounds, as well as their advancement in other areas of human development.
Collapse
|
4
|
Zard SZ. The Xanthate Route to Indolines, Indoles, and their Aza Congeners. Chemistry 2020; 26:12689-12705. [DOI: 10.1002/chem.202001341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/17/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Samir Z. Zard
- Laboratoire de Synthèse Organique, UMR 7652 Ecole Polytechnique 91128 Palaiseau France
| |
Collapse
|
6
|
Hoque IU, Chowdhury SR, Maity S. Photoredox-Catalyzed Intermolecular Radical Arylthiocyanation/Arylselenocyanation of Alkenes: Access to Aryl-Substituted Alkylthiocyanates/Alkylselenocyanates. J Org Chem 2019; 84:3025-3035. [DOI: 10.1021/acs.joc.8b03155] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Injamam Ul Hoque
- Department of Applied Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| | | | - Soumitra Maity
- Department of Applied Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| |
Collapse
|
7
|
Noroozi-Pesyan N, Khalafy J, Malekpoor Z. Can be Azo Dyes Obtained by Grinding under Solvent-Free Conditions? J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200900148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Habibi D, Heydari S, Nasrollahzadeh M. Synthesis of Aryl Nitriles using the Stable Aryl Diazonium Silica Sulfates. JOURNAL OF CHEMICAL RESEARCH 2012. [DOI: 10.3184/174751912x13450494102019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An efficient method for preparation of aryl nitriles is reported using Cu(I) to catalyse the reaction of aryl diazonium silica sulfates with sodium cyanide under mild conditions at room temperature in water. This method has the advantages of high yields, simple methodology, short reaction times and easy work-up.
Collapse
Affiliation(s)
- Davood Habibi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Somayyeh Heydari
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mahmoud Nasrollahzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| |
Collapse
|
10
|
Heteroaryl Radicals Review. ADVANCES IN HETEROCYCLIC CHEMISTRY 2010. [DOI: 10.1016/s0065-2725(10)10004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|