1
|
Ng JPL, Tiwari MK, Nasim AA, Zhang RL, Qu Y, Sharma R, Law BYK, Yadav DK, Chaudhary S, Coghi P, Wong VKW. Biological Evaluation in Resistant Cancer Cells and Study of Mechanism of Action of Arylvinyl-1,2,4-Trioxanes. Pharmaceuticals (Basel) 2022; 15:ph15030360. [PMID: 35337157 PMCID: PMC8955836 DOI: 10.3390/ph15030360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
1,2,4-trioxane is a pharmacophore, which possesses a wide spectrum of biological activities, including anticancer effects. In this study, the cytotoxic effect and anticancer mechanism of action of a set of 10 selected peroxides were investigated on five phenotypically different cancer cell lines (A549, A2780, HCT8, MCF7, and SGC7901) and their corresponding drug-resistant cancer cell lines. Among all peroxides, only 7 and 8 showed a better P-glycoprotein (P-gp) inhibitory effect at a concentration of 100 nM. These in vitro results were further validated by in silico docking and molecular dynamic (MD) studies, where compounds 7 and 8 exhibited docking scores of −7.089 and −8.196 kcal/mol, respectively, and remained generally stable in 100 ns during MD simulation. Further experiments revealed that peroxides 7 and 8 showed no significant effect on ROS accumulations and caspase-3 activity in A549 cells. Peroxides 7 and 8 were also found to decrease cell membrane potential. In addition, peroxides 7 and 8 were demonstrated to oxidize a flavin cofactor, possibly elucidating its mechanism of action. In conclusion, apoptosis induced by 1,2,4-trioxane was shown to undergo via a ROS- and caspase-3-independent pathway with hyperpolarization of cell membrane potential.
Collapse
Affiliation(s)
- Jerome P. L. Ng
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (A.A.N.); (R.L.Z.); (Y.Q.); (B.Y.K.L.)
| | - Mohit K. Tiwari
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India; (M.K.T.); (R.S.)
| | - Ali Adnan Nasim
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (A.A.N.); (R.L.Z.); (Y.Q.); (B.Y.K.L.)
| | - Rui Long Zhang
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (A.A.N.); (R.L.Z.); (Y.Q.); (B.Y.K.L.)
| | - Yuanqing Qu
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (A.A.N.); (R.L.Z.); (Y.Q.); (B.Y.K.L.)
| | - Richa Sharma
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India; (M.K.T.); (R.S.)
| | - Betty Yuen Kwan Law
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (A.A.N.); (R.L.Z.); (Y.Q.); (B.Y.K.L.)
| | - Dharmendra K. Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon City 21924, Korea
- Correspondence: (D.K.Y.); (S.C.); (P.C.); (V.K.W.W.)
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India; (M.K.T.); (R.S.)
- Laboratory of Organic and Medicinal Chemistry (OMC Lab), National Institute of Pharmaceutical Education and Research (NIPER-R) Raebareli, Lucknow 226002, India
- Correspondence: (D.K.Y.); (S.C.); (P.C.); (V.K.W.W.)
| | - Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
- Correspondence: (D.K.Y.); (S.C.); (P.C.); (V.K.W.W.)
| | - Vincent Kam Wai Wong
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (A.A.N.); (R.L.Z.); (Y.Q.); (B.Y.K.L.)
- Correspondence: (D.K.Y.); (S.C.); (P.C.); (V.K.W.W.)
| |
Collapse
|
2
|
Tiwari MK, Coghi P, Agrawal P, Shyamlal BRK, Jun Yang L, Yadav L, Peng Y, Sharma R, Yadav DK, Sahal D, Kam Wai Wong V, Chaudhary S. Design, Synthesis, Structure‐Activity Relationship and Docking Studies of Novel Functionalized Arylvinyl‐1,2,4‐Trioxanes as Potent Antiplasmodial as well as Anticancer Agents. ChemMedChem 2020; 15:1216-1228. [DOI: 10.1002/cmdc.202000045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Mohit K. Tiwari
- Laboratory of Organic and Medicinal ChemistryDepartment of ChemistryMalaviya National Institute of Technology Jawaharlal Nehru Marg Jaipur 302017 India
| | - Paolo Coghi
- School of PharmacyMacau University of Science and Technology Avenida wai long Taipa Macau China
| | - Prakhar Agrawal
- Malaria Drug Discovery LaboratoryInternational Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Marg 110 067 New Delhi India
| | - Bharti Rajesh K. Shyamlal
- Laboratory of Organic and Medicinal ChemistryDepartment of ChemistryMalaviya National Institute of Technology Jawaharlal Nehru Marg Jaipur 302017 India
| | - Li Jun Yang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa Macau China
| | - Lalit Yadav
- Laboratory of Organic and Medicinal ChemistryDepartment of ChemistryMalaviya National Institute of Technology Jawaharlal Nehru Marg Jaipur 302017 India
| | - Yuzhong Peng
- School of PharmacyMacau University of Science and Technology Avenida wai long Taipa Macau China
| | - Richa Sharma
- Laboratory of Organic and Medicinal ChemistryDepartment of ChemistryMalaviya National Institute of Technology Jawaharlal Nehru Marg Jaipur 302017 India
| | - Dharmendra K. Yadav
- College of PharmacyGachon University of Medicine and Science Hambakmoeiro 191, Yeonsu-gu Incheon city 406-799 South Korea
| | - Dinkar Sahal
- Malaria Drug Discovery LaboratoryInternational Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Marg 110 067 New Delhi India
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa Macau China
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal ChemistryDepartment of ChemistryMalaviya National Institute of Technology Jawaharlal Nehru Marg Jaipur 302017 India
| |
Collapse
|
3
|
Kao D, Chaintreau A, Lepoittevin JP, Giménez-Arnau E. Mechanistic studies on the reactivity of sensitizing allylic hydroperoxides: investigation of the covalent modification of amino acids by carbon-radical intermediates. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50109d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
Creek DJ, Charman WN, Chiu FCK, Prankerd RJ, McCullough KJ, Dong Y, Vennerstrom JL, Charman SA. Iron-mediated degradation kinetics of substituted dispiro-1,2,4-trioxolane antimalarials. J Pharm Sci 2007; 96:2945-56. [PMID: 17549767 DOI: 10.1002/jps.20958] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The iron-mediated reactivity of various dispiro-1,2,4-trioxolanes was determined by automated kinetic analysis under standard reaction conditions. The active antimalarial compounds underwent peroxide bond cleavage by Fe(II) resulting in products indicative of carbon-centered radical formation. The rate of reaction was heavily influenced by the presence of spiro-substituted adamantane and cyclohexane rings, and was also significantly affected by cyclohexane ring substitution. Steric hindrance around the peroxide oxygen atoms appeared to be the major determinant of reaction rate, however polar substituents also affected reactivity by an independent mechanism. A wide range of reaction rates was observed within this class of peroxide antimalarials, however iron-mediated reactivity did not directly correlate with in vitro antimalarial activity.
Collapse
Affiliation(s)
- Darren J Creek
- Centre for Drug Candidate Optimisation, Victorian College of Pharmacy, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Haynes RK, Chan WC, Lung CM, Uhlemann AC, Eckstein U, Taramelli D, Parapini S, Monti D, Krishna S. The Fe2+-Mediated Decomposition, PfATP6 Binding, and Antimalarial Activities of Artemisone and Other Artemisinins: The Unlikelihood of C-Centered Radicals as Bioactive Intermediates. ChemMedChem 2007; 2:1480-97. [PMID: 17768732 DOI: 10.1002/cmdc.200700108] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The results of Fe(2+)-induced decomposition of the clinically used artemisinins, artemisone, other aminoartemisinins, 10-deoxoartemisinin, and the 4-fluorophenyl derivative have been compared with their antimalarial activities and their ability to inhibit the parasite SERCA PfATP6. The clinical artemisinins and artemisone decompose under aqueous conditions to give mixtures of C radical marker products, carbonyl compounds, and reduction products. The 4-fluorophenyl derivative and aminoartemisinins tend to be inert to aqueous iron(II) sulfate and anhydrous iron(II) acetate. Anhydrous iron(II) bromide enhances formation of the carbonyl compounds and provides a deoxyglycal from DHA and enamines from the aminoartemisinins. Ascorbic acid (AA) accelerates the aqueous Fe(2+)-mediated decompositions, but does not alter product distribution. 4-Oxo-TEMPO intercepts C radicals from a mixture of an antimalaria-active trioxolane, 10-deoxoartemisinin, and anhydrous iron(II) acetate to give trapped products in 73 % yield from the trioxolane, and 3 % from the artemisinin. Artemisone provides a trapped product in 10 % yield. Thus, in line with its structural rigidity, only the trioxolane provides a C radical eminently suited for intermolecular trapping. In contrast, the structural flexibility of the C radicals from the artemisinins allows facile extrusion of Fe(2+) and collapse to benign isomerization products. The propensity towards the formation of radical marker products and intermolecular radical trapping have no relationship with the in vitro antimalarial activities of the artemisinins and trioxolane. Desferrioxamine (DFO) attenuates inhibition of PfATP6 by, and antagonizes antimalarial activity of, the aqueous Fe(2+)-susceptible artemisinins, but has no overt effect on the aqueous Fe(2+)-inert artemisinins. It is concluded that the C radicals cannot be responsible for antimalarial activity and that the Fe(2+)-susceptible artemisinins may be competitively decomposed in aqueous extra- and intracellular compartments by labile Fe(2+), resulting in some attenuation of their antimalarial activities. Interpretations of the roles of DFO and AA in modulating antimalarial activities of the artemisinins, and a comparison with antimalarial properties of simple hydroperoxides and their behavior towards thapsigargin-sensitive SERCA ATPases are presented. The general basis for the exceptional antimalarial activities of artemisinins in relation to the intrinsic activity of the peroxide within the uniquely stressed environment of the malaria parasite is thereby adumbrated.
Collapse
Affiliation(s)
- Richard K Haynes
- Department of Chemistry, Open Laboratory of Chemical Biology, Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|