1
|
Lianglu J, Hu W, Zhu X, Zhang HY, Shi L, Hao XQ, Song MP. Synthesis of a Tetrahedral Metal-Organic Supramolecular Cage with Dendritic Carbazole Arms. Int J Mol Sci 2022; 23:15580. [PMID: 36555222 PMCID: PMC9779595 DOI: 10.3390/ijms232415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
In recent years, incredible endeavors have been devoted to the design and self-assembly of discrete metal-organic cages (MOCs) with expanding intricacy and functionality. The controlled synthesis of metal-organic supramolecular cages with large branched chains remains an interesting and challenging work in supramolecular chemistry. Herein, a tetrahedral metal-organic supramolecular cage (ZnII4L4) containing 12 dendritic carbazole arms is unprecedentedly constructed through coordination-driven subcomponent self-assembly and characterized in different ways. Interestingly, tetrahedral supramolecular Cage-1 exhibited the potential for aggregation-induced emission (AIE) performance and stimulus-responsive luminescence features, and it achieved color-tunable photoluminescence due to the introduction of dendritic carbazole arms. Crucially, owing to the great photophysical properties of Cage-1 in solution, Cage-1 was enabled to act as a fluorescent ink for the vapor-responsive recording and wiping of information.
Collapse
Affiliation(s)
- Juanzi Lianglu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Weinan Hu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Yu Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Albrecht K, Hisamura E, Furukori M, Nakayama Y, Hosokai T, Nakao K, Ikebe H, Nakayama A. Thermally Activated Delayed Fluorescence of Carbazole-Benzophenone Dendrimer with Bulky Substituents. Polym Chem 2022. [DOI: 10.1039/d2py00255h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbazole dendrimers with benzophenone core and bulky terminal substituents were synthesized, and thermally-activated delayed fluorescence (TADF) property was investigated. The adamantane (Ad) substituted dendrimer showed green TADF emission with PLQY...
Collapse
|
3
|
Yoon J, Kim SK, Kim HJ, Choi S, Jung SW, Lee H, Kim JY, Yoon DW, Han CW, Chae WS, Kwon JH, Cho MJ, Choi DH. Asymmetric Host Molecule Bearing Pyridine Core for Highly Efficient Blue Thermally Activated Delayed Fluorescence OLEDs. Chemistry 2020; 26:16383-16391. [PMID: 32686232 DOI: 10.1002/chem.202002655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/16/2020] [Indexed: 01/12/2023]
Abstract
In this study, two host materials, pCzBzbCz and pCzPybCz, are synthesized to achieve a high efficiency and long lifetime of blue thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs). The molecular design strategy involves the introduction of a pyridine group into the core structure of pCzPybCz as an electron-withdrawing unit, and an electron-donating phenyl group into the structure of pCzBzbCz. These host materials demonstrate good thermal stability and high triplet energy (T1 =3.07 eV for pCzBzbCz and 3.06 eV for pCzPybCz) for the fabrication of blue TADF-OLEDs. In particular, pCzPybCz-based OLED devices demonstrate an external quantum efficiency (EQE) of 22.7 % and an operational lifetime of 24 h (LT90 , time to attain 90 % of initial luminance) at an initial luminance of 1000 cd m-2 . This superior lifetime could be explained by the C-N bond dissociation energy (BDE) in the host molecular structure. Furthermore, a mixed-host system using the electron-deficient 2,4-bis(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine (DDBFT) is proposed to inhibit the formation of the anion state of our host materials. In short, the device operational lifetime is further improved by applying DDBFT. The carbazole-based asymmetric host molecule containing a pyridine core realizes a high-efficiency blue TADF-OLED showing a positive effect on the operating lifetime, and can provide useful strategies for designing new host materials.
Collapse
Affiliation(s)
- Jiwon Yoon
- Department of Chemistry, Research Institute for Natural Sciences, Institution Korea University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
| | - Seong Keun Kim
- Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyung Jong Kim
- Department of Chemistry, Research Institute for Natural Sciences, Institution Korea University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
| | - Suna Choi
- Department of Chemistry, Research Institute for Natural Sciences, Institution Korea University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
| | - Sang Won Jung
- Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyuna Lee
- Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jun Yun Kim
- LG Display, Co., Ltd., LG Science Park, 30, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Dae-Wi Yoon
- LG Display, Co., Ltd., LG Science Park, 30, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Chang Wook Han
- LG Display, Co., Ltd., LG Science Park, 30, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Weon-Sik Chae
- Daegu Center, Korea Basic Science Institute, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Jang Hyuk Kwon
- Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Institution Korea University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Institution Korea University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
7
|
Su R, Wei H, Zhang X, Ma S, Yan J, Cui Y, Zhang Z. Synthesis and Optical Properties of Novel Carbazole Derivatives Containing Pyridine Ring. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruifei Su
- College of Chemistry and Chemical Engineering; Shanxi University; Taiyuan 030006 Shanxi China
| | - Hongyu Wei
- College of Chemistry and Chemical Engineering; Shanxi University; Taiyuan 030006 Shanxi China
| | - Xin Zhang
- College of Chemistry and Chemical Engineering; Shanxi University; Taiyuan 030006 Shanxi China
| | - Sufang Ma
- College of Chemistry and Chemical Engineering; Shanxi University; Taiyuan 030006 Shanxi China
| | - Jing Yan
- College of Chemistry and Chemical Engineering; Shanxi University; Taiyuan 030006 Shanxi China
| | - Yuan Cui
- College of Chemistry and Chemical Engineering; Shanxi University; Taiyuan 030006 Shanxi China
| | - Zhao Zhang
- College of Chemistry and Chemical Engineering; Shanxi University; Taiyuan 030006 Shanxi China
| |
Collapse
|
10
|
Du B, Fortin D, Harvey PD. Singlet and triplet energy transfers in tetra-(meso-truxene)zinc(II)- and tetra-(meso-tritruxene)zinc(II) porphyrin and porphyrin-free base dendrimers. Inorg Chem 2011; 50:11493-505. [PMID: 22017417 DOI: 10.1021/ic2013667] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The synthesis, optical properties, and energy transfer features of four dendrimers composed of meso-tetrasubstituted zinc(II) porphyrin (ZnP) or a free base (P) central core, where the substituents are four truxene (Tru) or four tritruxene dendrons (TriTru), TruP, TriTruP, TruZnP, and TriTruZnP, are reported. Selective excitation of the truxene donors results in a photoinduced singlet energy transfer from the truxenes to the porphyrin acceptor. The rates for singlet energy transfer (k(ET)), evaluated from the change in the fluorescence lifetime of the donors (Tru and TriTru) in the presence and absence of the acceptor (P or ZnP) for TruP, TruZnP, TriTruP, and TriTruZnP, are 5.9, 1.2, 0.87, and 0.74 (ns)(-1) at 298 K and 2.6, 2.6, 2.7, and 1.2 (ns)(-1) at 77 K, respectively. A slow triplet-triplet energy transfer from truxene to porphyrin cores in glassy 2MeTHF at 77 K is also reported with rates of 1.3 × 10(3) and 0.10 × 10(2) s(-1) for TruZnP and TriTruZnP, respectively. If the Dexter mechanism for the triplet energy transfers is considered, these slow rates are easily explained by a poor orbital overlap between the truxene and porphyrin π systems. The fluorescence quantum yields (Φ(F)) are 0.20 and 0.16 for TruP and TriTruP and 0.08 and 0.10 for TruZnP and TriTruZnP, respectively at 298 K. At 298 K, a phosphorescence from TruZnP at 795 nm was also observed and is associated with the ZnP chromophore.
Collapse
Affiliation(s)
- Bin Du
- Département de Chimie, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|