• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4603303)   Today's Articles (3332)   Subscriber (49369)
For: Muscia GC, Bollini M, Carnevale JP, Bruno AM, Asís SE. Microwave-assisted Friedländer synthesis of quinolines derivatives as potential antiparasitic agents. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.10.073] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Number Cited by Other Article(s)
1
Bakibillah M, Reja S, Sarkar K, Mukherjee D, Sarkar D, Roy S, Almutairi TM, Islam MS, Das RK. Cp*Ir(III) complexes catalyzed solvent-free synthesis of quinolines, pyrroles and pyridines via an ADC strategy. Org Biomol Chem 2024;22:4704-4719. [PMID: 38775495 DOI: 10.1039/d4ob00459k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
2
Chauhan Y, Neha K, Wakode S, Shahfaiz M, Bodla RB, Sharma K. Progression and expansion of quinoline as bioactive moiety: a patent review. Pharm Pat Anal 2023;12:287-314. [PMID: 38294336 DOI: 10.4155/ppa-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
3
Mohamadpour F. Visible-light-driven radical Friedländer hetero-annulation of 2-aminoaryl ketone and α-methylene carbonyl compound via organic dye fluorescein through a single-electron transfer (SET) pathway. BMC Chem 2022;16:116. [PMID: 36522648 PMCID: PMC9753410 DOI: 10.1186/s13065-022-00910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]  Open
4
Rajendran S, Sivalingam K, Karnam Jayarampillai RP, Wang WL, Salas CO. Friedlӓnder's synthesis of quinolines as a pivotal step in the development of bioactive heterocyclic derivatives in the current era of medicinal chemistry. Chem Biol Drug Des 2022;100:1042-1085. [PMID: 35322543 DOI: 10.1111/cbdd.14044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/14/2022] [Accepted: 03/20/2022] [Indexed: 01/25/2023]
5
Koçyiğit ÜM, Ökten S, Çakmak O, Burhan G, Ataş M, Taslimi P, Gülçin İ. Arylated Quinoline and Tetrahydroquinolines: Synthesis, Characterization and Their Metabolic Enzyme Inhibitory and Antimicrobial Activities. ChemistrySelect 2022. [DOI: 10.1002/slct.202203469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
6
Rao DT, Seetharam P. Synthesis of Quinoline Derivatives Using Double Perovskite Bi1.97Eu0.03MoO6 Heterogeneous Nanocatalyst. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022070156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
7
Mohamadpour F. The development of Friedländer heteroannulation through a single electron transfer and energy transfer pathway using methylene blue (MB+). Sci Rep 2022;12:7253. [PMID: 35508509 PMCID: PMC9068815 DOI: 10.1038/s41598-022-11349-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022]  Open
8
Satheeshkumar R, Prasad KJR, Wen‐Long W, Espinosa‐Bustos C, Salas CO. Solvent‐Free Synthesis of New Quinoline Derivatives via Eaton's Reagent Catalysed Friedländer Synthesis. ChemistrySelect 2022. [DOI: 10.1002/slct.202104416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
9
Thandra DR, Allikayala R. Synthesis, characterization, molecular structure determination by single crystal X-ray diffraction, and Hirshfeld surface analysis of 7-fluoro-6-morpholino-3-phenylquinolin-1-ium chloride salt and computational studies of its cation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
10
Kargar H, Fallah-Mehrjardi M, Munawar KS. Dioxovanadium(V) Complex Incorporating Tridentate ONO Donor Aminobenzohydrazone Ligand: Synthesis, Spectral Characterization and Application as a Homogeneous Lewis Acid Catalyst in the Friedländer Synthesis of Substituted Quinolines. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1984258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
11
Jadhav G, Medhane V, Deshmukh D, Gaikwad S. New synthetic strategy for Friedlander condensation of 4‐amino‐2‐oxo‐2 H ‐chromene‐3‐carbaldehyde by heterogeneous catalysis. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
12
Luczywo A, González LG, Aguiar ACC, Oliveira de Souza J, Souza GE, Oliva G, Aguilar LF, Casal JJ, Guido RVC, Asís SE, Mellado M. 3-aryl-indolinones derivatives as antiplasmodial agents: synthesis, biological activity and computational analysis. Nat Prod Res 2021;36:3887-3893. [PMID: 33703954 DOI: 10.1080/14786419.2021.1895149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
13
Luczywo A, Sauter IP, Silva Ferreira TC, Cortez M, Romanelli GP, Sathicq G, Asís SE. Microwave‐assisted synthesis of 2‐styrylquinoline‐4‐carboxylic acid derivatives to improve the toxic effect against Leishmania (Leishmania) amazonensis. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
14
Teja C, Khan FRN. Radical Transformations towards the Synthesis of Quinoline: A Review. Chem Asian J 2020;15:4153-4167. [PMID: 33135361 DOI: 10.1002/asia.202001156] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Indexed: 12/21/2022]
15
Bailey HV, Mahon MF, Vicker N, Potter BVL. Rapid and Efficient Microwave-Assisted Friedländer Quinoline Synthesis. ChemistryOpen 2020;9:1113-1122. [PMID: 33194530 PMCID: PMC7643340 DOI: 10.1002/open.202000247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/01/2020] [Indexed: 12/03/2022]  Open
16
Chandrappa M, Swathi K, Girish Kumar S, Pullela PK. Nanomaterial assisted bulk scale synthesis of 2-methyl-6-nitroquinoline. MATERIALS TODAY. PROCEEDINGS 2020;37:1469-1474. [PMID: 32837922 PMCID: PMC7415172 DOI: 10.1016/j.matpr.2020.07.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
17
Muscia GC, Roldán Pacheco FJ, Asís SE, Buldain GY, Frank FM. Hit-to-lead optimization of novel 2-alkylaminomethylquinoline derivatives as anti-chagas agents. Eur J Med Chem 2020;186:111877. [DOI: 10.1016/j.ejmech.2019.111877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 01/15/2023]
18
Muscia GC, Carnevale JP, Luczywo A, Victoria Peláez M, Rodríguez Ó Toole A, Buldain GY, Casal JJ, Asís SE. Synthesis, anti-tuberculosis activity and QSAR study of 2,4-diarylquinolines and analogous polycyclic derivatives. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
19
Ökten S. Synthesis of aryl-substituted quinolines and tetrahydroquinolines through Suzuki–Miyaura coupling reactions. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819861389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
20
Maji M, Chakrabarti K, Panja D, Kundu S. Sustainable synthesis of N-heterocycles in water using alcohols following the double dehydrogenation strategy. J Catal 2019. [DOI: 10.1016/j.jcat.2019.03.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
21
Dadhania H, Raval D, Dadhania A. A Highly Efficient and Solvent-Free Approach for the Synthesis of Quinolines and Fused Polycyclic Quinolines Catalyzed by Magnetite Nanoparticle-Supported Acidic Ionic Liquid. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1595057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
22
Kappenberg YG, Ketzer A, Stefanello FS, Salbego PRS, Acunha TV, Abbadi BL, Bizarro CV, Basso LA, Machado P, Martins MAP, Zanatta N, Iglesias BA, Bonacorso HG. Synthesis and photophysical, thermal and antimycobacterial properties of novel 6-amino-2-alkyl(aryl/heteroaryl)-4-(trifluoromethyl) quinolines. NEW J CHEM 2019. [DOI: 10.1039/c9nj01681c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
23
Malinowski Z, Fornal E, Warpas A, Nowak M. Synthesis of benzoquinoline derivatives from formyl naphthylamines via Friedländer annulation under metal-free conditions. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2268-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
24
Mohareb RM, Abdo NYM, Wardakhan WW. Synthesis and evaluation of pyrazolo[5,1-b]quinazoline-2-carboxylate, and its thiazole derivatives as potential antiproliferative agents and Pim-1 kinase inhibitors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1951-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
25
Synthesis of tetrahydropyrazolo-quinazoline and tetrahydropyrazolo-pyrimidocarbazole derivatives as potential anti-prostate cancer agents and Pim-1 kinase inhibitors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
26
Hosseyni Largani T, Imanzadeh G, Noroozi Pesyan N, Şahin E. Unexpected simultaneous synthesis of trisubstituted quinolines and acylhydrazones under catalyst-free conditions. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1310249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
27
Tufail F, Saquib M, Singh S, Tiwari J, Singh M, Singh J, Singh J. Bioorganopromoted green Friedländer synthesis: a versatile new malic acid promoted solvent free approach to multisubstituted quinolines. NEW J CHEM 2017. [DOI: 10.1039/c6nj03907c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
28
Satheeshkumar R, Shankar R, Kaminsky W, JayarampillaiRajendra Prasad K. Novel Synthetic and Mechanistic Approach of TFA Catalysed Friedländer Synthesis of 2-Acylquinolines from Symmetrical and Unsymmetrical 1,2-Diketones witho-Aminoarylketones. ChemistrySelect 2016. [DOI: 10.1002/slct.201601624] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
29
Effective water mediated green synthesis of polysubstituted quinolines without energy expenditure. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1826-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
30
Sarveswari S, Vijayakumar V. A rapid microwave assisted synthesis of 1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3-(aryl)prop-2-en-1-ones and their anti bacterial and anti fungal evaluation. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2011.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]  Open
31
Shahabi D, Tavakol H. One-pot synthesis of quinoline derivatives using choline chloride/tin (II) chloride deep eutectic solvent as a green catalyst. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.04.094] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
32
Efficient one-pot synthesis of new fused pyridines and bis-pyridines catalyzed by triazine diphosphonium hydrogen sulfate ionic liquid supported on functionalized nano-silica. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
33
A facile synthesis of novel pyrrolo[3,4-b]quinolin-1-one derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-015-2273-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
34
Cho SK, Song JH, Lee EJ, Lee DH, Hahn JT, Jung DI. Quinolines Formation by Condensation of Heteroaromatic Ketones and 2-Aminobenzophenones under MW Irradiation. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
35
Ökten S, Çakmak O. Synthesis of novel cyano quinoline derivatives. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.07.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
36
Maleki B, Seresht ER, Ebrahimi Z. Friedlander Synthesis of Quinolines Promoted By Polymer-bound Sulfonic Acid. ORG PREP PROCED INT 2015. [DOI: 10.1080/00304948.2015.1005986] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
37
Prasath R, Bhavana P, Sarveswari S, Ng SW, Tiekink ER. Efficient ultrasound-assisted synthesis, spectroscopic, crystallographic and biological investigations of pyrazole-appended quinolinyl chalcones. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
38
Luo CZ, Gandeepan P, Wu YC, Chen WC, Cheng CH. Copper promoted synthesis of substituted quinolines from benzylic azides and alkynes. RSC Adv 2015. [DOI: 10.1039/c5ra23065a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]  Open
39
Kaur N. Polycyclic Six-MemberedN-Heterocycles: Microwave-Assisted Synthesis. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2013.813549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
40
Thillainayagam M, Pandian L, Murugan KK, Vijayaparthasarathi V, Sundaramoorthy S, Anbarasu A, Ramaiah S. In silicoanalysis reveals the anti-malarial potential of quinolinyl chalcone derivatives. J Biomol Struct Dyn 2014;33:961-77. [DOI: 10.1080/07391102.2014.920277] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
41
Javanshir S, Sharifi S, Maleki A, Sohrabi B, Kiasadegh M. p -toluenesulfonic acid-catalyzed synthesis of polysubstituted quinolines via Friedländer reaction under ball-milling conditions at room temperature and theoretical study on the mechanism using a density functional theory method. J PHYS ORG CHEM 2014. [DOI: 10.1002/poc.3305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
42
Nammalwar B, Murie M, Fortenberry C, Bunce RA. Quinoline- and 1,8-naphthyridine-3-carboxylic acids using a self-catalyzed Friedländer approach. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
43
Shirini F, Yahyazadeh A, Mohammadi K, Khaligh NG. Solvent-free synthesis of quinoline derivatives via the Friedländer reaction using 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient and recyclable ionic liquid catalyst. CR CHIM 2014. [DOI: 10.1016/j.crci.2013.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
44
Muscia GC, Hautmann S, Buldain GY, Asís SE, Gütschow M. Synthesis and evaluation of 2-(1H-indol-3-yl)-4-phenylquinolines as inhibitors of cholesterol esterase. Bioorg Med Chem Lett 2014;24:1545-9. [DOI: 10.1016/j.bmcl.2014.01.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
45
Venkanna A, Swapna K, Rao PV. Recyclable nano copper oxide catalyzed synthesis of quinoline-2,3-dicarboxylates under ligand free conditions. RSC Adv 2014. [DOI: 10.1039/c3ra47212d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]  Open
46
Dhakshinamoorthy A, Garcia H. Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem Soc Rev 2014;43:5750-65. [DOI: 10.1039/c3cs60442j] [Citation(s) in RCA: 391] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
47
Muscia GC, Buldain GY, Asís SE. Design, synthesis and evaluation of acridine and fused-quinoline derivatives as potential anti-tuberculosis agents. Eur J Med Chem 2013;73:243-9. [PMID: 24412719 DOI: 10.1016/j.ejmech.2013.12.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/22/2013] [Accepted: 12/14/2013] [Indexed: 11/17/2022]
48
Quintal S, Morais TS, Matos CP, Paula Robalo M, Piedade MFM, Villa de Brito MJ, Helena Garcia M, Marques M, Maia C, Campino L, Madureira J. Synthesis, structural characterization and leishmanicidal activity evaluation of ferrocenyl N-heterocyclic compounds. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
49
Bandgar BP, More PE, Kamble VT. Synthesis of Polysubstituted Quinolines Using Cyanuric Chloride as a Catalyst Under Aqueous Conditions. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200800141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
50
Wu LQ, Wang X, Ma WW, Yan FL. One-Pot Three-Component Synthesis of 6-Bromoquinolines and 6-Iodoquinolines. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201000086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA