Hałasa R, Turecka K, Orlewska C, Werel W. Comparison of fluorescence optical respirometry and microbroth dilution methods for testing antimicrobial compounds.
J Microbiol Methods 2014;
107:98-105. [PMID:
25307692 DOI:
10.1016/j.mimet.2014.09.008]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 10/24/2022]
Abstract
An analysis of the usefulness of the fluorescence optical respirometry test method to study several antimicrobials was performed. An oxygen-sensitive sensor: ruthenium-tris(4,7-diphenyl-1,10-phenanthroline) dichloride (Ru(DPP)3Cl2), the phosphorescence of which is quenched by molecular oxygen, was synthesised according to a method modified by us and then applied. A prototype sensitive measurement system was designed and constructed. Analyses of the impact of various antimicrobial chemical factors were performed: ampicillin, co-trimoxazole, nystatin, and newly synthesised compounds. It was shown that optical respirometry allows for analysis of the culture growth kinetics of bacteria and fungi and determination of cell growth parameters. It was shown also that MIC values obtained by fluorescence optical respirometry are consistent with the results of the MIC determinations made by serial dilution method (traditional MIC testing using CLSI). The method allows the time to obtain results to be significantly reduced (from 24-48 h to 5-7 h for bacteria and 24 yeasts) and allows the effect of concentrations below the MIC for the metabolic activity of microorganisms to be monitored. The sensitivity of the method allowed the volume of the tested samples to be lessened from 160 μl to 50 μl. Fluorescence optical respirometry allows for the rapid detection and evaluation of the action of various chemical compounds on the metabolic activity of microorganisms in real-time measurement of fluorescence intensity.
Collapse