1
|
Pugachev AD, Kozlenko AS, Makarova NI, Rostovtseva IA, Ozhogin IV, Dmitriev VS, Borodkin GS, Tkachev VV, Utenyshev AN, Sazykina MA, Sazykin IS, Azhogina TN, Karchava SK, Klimova MV, Metelitsa AV, Lukyanov BS. Molecular design and synthesis of methoxy-substitued spiropyrans with photomodulated NIR-fluorescence. Photochem Photobiol Sci 2023; 22:2651-2673. [PMID: 37733213 DOI: 10.1007/s43630-023-00479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
This study focuses on the molecular design and synthesis of salt spiropyrans with near-IR fluorescence. The structure of the obtained compounds was confirmed by NMR, IR and mass spectroscopy. In the course of studying the spectral and photoluminescent characteristics, it was possible to reveal the effect of some substituents in various positions on the properties of spiropyran dyes. Due to the structural similarity of one of the isomers to cyanine dyes, the obtained compounds are of interest as potential fluorescent probes for bioimagimg, in particular, for DNA studies. To reveal their ability of binding to DNA molecules molecular docking was carried out. Toxic effects of compounds demonstrating NIR fluorescence were studied on biofilms, as well as using bacterial lux-biosensors.
Collapse
Affiliation(s)
- Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation.
| | - Anastasia S Kozlenko
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| | - Vitaly S Dmitriev
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| | - Gennady S Borodkin
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| | - Valery V Tkachev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Ac. Semenov Avenue, 1, Moscow Region, Chernogolovka, Russian Federation
| | - Andrey N Utenyshev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Ac. Semenov Avenue, 1, Moscow Region, Chernogolovka, Russian Federation
| | - Marina A Sazykina
- Academy of Biology and Biotechnologies, Southern Federal University, 344090 Stachki prosp., 194/1, Rostov-On-Don, Russian Federation
| | - Ivan S Sazykin
- Academy of Biology and Biotechnologies, Southern Federal University, 344090 Stachki prosp., 194/1, Rostov-On-Don, Russian Federation
| | - Tatiana N Azhogina
- Academy of Biology and Biotechnologies, Southern Federal University, 344090 Stachki prosp., 194/1, Rostov-On-Don, Russian Federation
| | - Shorena K Karchava
- Academy of Biology and Biotechnologies, Southern Federal University, 344090 Stachki prosp., 194/1, Rostov-On-Don, Russian Federation
| | - Maria V Klimova
- Academy of Biology and Biotechnologies, Southern Federal University, 344090 Stachki prosp., 194/1, Rostov-On-Don, Russian Federation
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| |
Collapse
|
2
|
Pugachev AD, Ozhogin IV, Lukyanova MB, Lukyanov BS, Kozlenko AS, Rostovtseva IA, Makarova NI, Tkachev VV, Aldoshin SM, Metelitsa AV. Synthesis, structure and photochromic properties of indoline spiropyrans with electron-withdrawing substituents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Li Q, Yang L, Liu W, Wang T, Zhu Y, Du Z. Formylation of Phenols and Paraformaldehyde Catalyzed by Ammonium Acetate. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202011014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Pugachev AD, Ozhogin IV, Lukyanova MB, Lukyanov BS, Rostovtseva IA, Dorogan IV, Makarova NI, Tkachev VV, Metelitsa AV, Aldoshin SM. Visible to near-IR molecular switches based on photochromic indoline spiropyrans with a conjugated cationic fragment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118041. [PMID: 31955116 DOI: 10.1016/j.saa.2020.118041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Photochromic molecules which can absorb and emit light within the "biological window" (650-1450 nm) are of great interest for using in various important biomedical applications such as bio-imaging, photopharmacology, targeted drug delivery, etc. Here we present three new indoline spiropyrans containing conjugated cationic fragments and halogen substituents in the 2H-chromene moiety which were synthesized by a simple one-pot method. The molecular structure of the obtained compounds was confirmed by FT-IR, 1H and 13C NMR spectroscopy (including 2D methods), HRMS, elemental and single crystal X-ray analysis. Photochemical studies revealed the photochromic activity of spiropyrans at room temperature which caused photoswitchable fluorescence in the near-IR region after UV-irradiation. While the spirocyclic forms of compounds demonstrated absorption bands in the UV-Vis spectra with maxima in the visible region at about 445 nm and were not fluorescent, the photogenerated merocyanine isomers absorbed in the near-IR range at 708-738 nm and emitted at 768-791 nm. It was found that compound 1a with fluorine substituent possesses the most red-shifted absorption and emission bands of merocyanine form among all the known photochromic spiropyrans with maxima at 738 and 791 nm correspondingly. TD DFT calculations have shown that the longest wavelength absorption maxima of the merocyanine forms correspond to S0-S1 transitions of the isomers with at least one trans-trans-trans-configured vinylindolium fragment which brings them closer to cyanine-like structure and causes an appearance of the absorption and emission bands in the near-IR region.
Collapse
Affiliation(s)
- Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation.
| | - Maria B Lukyanova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation; Don State Technical University, 1 Gagarin sq., 344000 Rostov-on-Don, Russian Federation
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Igor V Dorogan
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Valery V Tkachev
- Institute of Problems of Chemical Physics, Russian Acadeemy of Sciences, 1 Akad. Semenova ave., 142432 Chernogolovka, Moscow Region, Russian Federation; Institute of Physiologically Active Substances, 1 Severny proezd, 142432 Chernogolovka, Moscow Region, Russian Federation
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Sergey M Aldoshin
- Institute of Problems of Chemical Physics, Russian Acadeemy of Sciences, 1 Akad. Semenova ave., 142432 Chernogolovka, Moscow Region, Russian Federation
| |
Collapse
|
5
|
Pugachev AD, Kozlenko AS, Luk’yanova MB, Luk’yanov BS, Tkachev VV, Shilov GV, Demidov OP, Minkin VI, Aldoshin SM. One-Pot Synthesis and Structure Study of a New Indoline Spiropyran with Cationic Substituent. DOKLADY CHEMISTRY 2019. [DOI: 10.1134/s0012500819100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Pugachev AD, Lukyanova MB, Tkachev VV, Lukyanov BS, Makarova NI, Shilov GV, Rostovtseva IA, Lapshina LS, Minkin VI, Aldoshin SM. New Photochromic Salt Spiropyrans of Indoline Series. DOKLADY CHEMISTRY 2019. [DOI: 10.1134/s0012500819020113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|