1
|
Yang YO, Wang X, Xiao J, Li Y, Sun F, Du Y. Formation of Carbon-Nitrogen Bond Mediated by Hypervalent Iodine Reagents Under Metal-free Conditions. CURR ORG CHEM 2021. [DOI: 10.2174/1385272822999201117154919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the past several decades, hypervalent iodine chemistry has witnessed prosperous
development as hypervalent iodine reagents have been widely used in various organic transformations.
Specifically, hypervalent iodine reagents have been vastly used in various bondforming
reactions. Among these oxidative coupling reactions, the reactions involving the
formation of C-N bond have been extensively explored to construct various heterocyclic
skeletons and synthesize various useful building blocks. This review article is to summarize
all the transformations in which carbon-nitrogen bond formation occurred by using hypervalent
iodine reagents under metal-free conditions.
Collapse
Affiliation(s)
- Yaxin O. Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xi Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jiaxi Xiao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yadong Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fengxia Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology; Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Facchetti G, Christodoulou MS, Mendoza LB, Cusinato F, Dalla Via L, Rimoldi I. Biological Properties of New Chiral 2-Methyl-5,6,7,8-tetrahydroquinolin-8-amine-based Compounds. Molecules 2020; 25:molecules25235561. [PMID: 33260896 PMCID: PMC7729733 DOI: 10.3390/molecules25235561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
The synthesis of a small library of 8-substituted 2-methyl-5,6,7,8-tetrahydroquinoline derivatives is presented. All the compounds were tested for their antiproliferative activity in non-cancer human dermal microvascular endothelial cells (HMEC-1) and cancer cells: human T-lymphocyte cells (CEM), human cervix carcinoma cells (HeLa), human dermal microvascular endothelial cells (HMEC-1), colorectal adenocarcinoma (HT-29), ovarian carcinoma (A2780), and biphasic mesothelioma (MSTO-211H). Compounds 3a, 5a, and 2b, showing significant IC50 values against the whole panel of the selected cells, were further synthesized and tested as pure enantiomers in order to shed light on how their stereochemistry might impact on the related biological effect. The most active compound (R)-5a was able to affect cell cycle phases and to induce mitochondrial membrane depolarization and cellular ROS production in A2780 cells.
Collapse
Affiliation(s)
- Giorgio Facchetti
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano via Venezian, 21, 20133 Milano, Italy; (M.S.C.); (I.R.)
- Correspondence: (G.F.); (L.D.V.)
| | - Michael S. Christodoulou
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano via Venezian, 21, 20133 Milano, Italy; (M.S.C.); (I.R.)
| | - Lina Barragán Mendoza
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via F. Marzolo, 5, 35131 Padova, Italy; (L.B.M.); (F.C.)
- Facultad de Ciencias Químicas, Universidad de Colima, Carr. Colima-Coquimatlán km 9, Coquimatlán 28400, Colima, Mexico
| | - Federico Cusinato
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via F. Marzolo, 5, 35131 Padova, Italy; (L.B.M.); (F.C.)
| | - Lisa Dalla Via
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via F. Marzolo, 5, 35131 Padova, Italy; (L.B.M.); (F.C.)
- Correspondence: (G.F.); (L.D.V.)
| | - Isabella Rimoldi
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano via Venezian, 21, 20133 Milano, Italy; (M.S.C.); (I.R.)
| |
Collapse
|
3
|
Abdulla Afsina CM, Aneeja T, Neetha M, Anilkumar G. Recent Advances in the Synthesis of Pyrazole Derivatives. Curr Org Synth 2020; 18:197-213. [PMID: 33167842 DOI: 10.2174/1570179417666201109151036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
Pyrazole and its derivatives have gained wide attention in pharmaceutical, agrochemical and biological fields as well as in industry. They exhibit various biological activities such as anti-pyretic, anti-microbial, anti- inflammatory, anti-tumor, anti-viral, anti-histaminic, anti-convulsant, fungicidal, insecticidal, etc. In this review, we summarise the recent advances in the synthesis of pyrazole derivatives using various methodologies and covers literature from 2017-2020.
Collapse
Affiliation(s)
| | - Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, India
| | - Mohan Neetha
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, India
| |
Collapse
|
4
|
Derasp JS, Barbera EA, Séguin NR, Brzezinski DD, Beauchemin AM. Synthesis of Hydroxamic Acid Derivatives Using Blocked (Masked) O-Isocyanate Precursors. Org Lett 2020; 22:7403-7407. [PMID: 32880464 DOI: 10.1021/acs.orglett.0c02782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydroxamic acids are present in a several pharmaceuticals and agrochemicals. Synthetic strategies providing access to hydroxamic acid derivatives remain limited, typically requiring the use of nucleophilic hydroxylamine reagents. Herein, a synthesis of hydroxamates from unactivated carboxylic acids is reported making use of rare blocked (masked) O-substituted isocyanates. The applicability of this transformation was highlighted by targeting the synthesis of vorinostat and belinostat derivatives.
Collapse
Affiliation(s)
- Joshua S Derasp
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Erica A Barbera
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Niève R Séguin
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - David D Brzezinski
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - André M Beauchemin
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
5
|
Corsini E, Facchetti G, Esposito S, Maddalon A, Rimoldi I, Christodoulou MS. Antiproliferative effects of chalcones on T cell acute lymphoblastic leukemia-derived cells: Role of PKCβ. Arch Pharm (Weinheim) 2020; 353:e2000062. [PMID: 32394529 DOI: 10.1002/ardp.202000062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
Abstract
In this study, a series of 20 chalcone derivatives was synthesized, and their antiproliferative activity was tested against the human T cell acute lymphoblastic leukemia-derived cell line, CCRF-CEM. On the basis of the structural features of the most active compounds, a new library of chalcone derivatives, according to the structure-activity relationship design, was synthesized, and their antiproliferative activity was tested against the same cancer cell line. Furthermore, four of these derivatives (compounds 3, 4, 8, 28), based on lower IC50 values (between 6.1 and 8.9 μM), were selected for further investigation regarding the modulation of the protein expression of RACK1 (receptor for activated C kinase), protein kinase C (PKC)α and PKCβ, and their action on the cell cycle level. The cell cycle analysis indicated a block in the G0/G1 phase for all four compounds, with a statistically significant decrease in the percentage of cells in the S phase, with no indication of apoptosis (sub-G0/G1 phase). Compounds 4 and 8 showed a statistically significant reduction in the expression of PKCα and an increase in PKCβ, which together with the demonstration of an antiproliferative role of PKCβ, as assessed by treating cells with a selective PKCβ activator, indicated that the observed antiproliferative effect is likely to be mediated through PKCβ induction.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Giorgio Facchetti
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milano, Italy
| | - Sara Esposito
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Ambra Maddalon
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Isabella Rimoldi
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milano, Italy
| | - Michael S Christodoulou
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
6
|
Affiliation(s)
- Saikat Maiti
- School of Chemical SciencesNational Institute of Science Education and Research (NISER)HBNIBhubaneswarPO Bhimpur-Padanpur Via Jatni District Khurda Odisha 752050 India
| | - Md Toufique Alam
- School of Chemical SciencesNational Institute of Science Education and Research (NISER)HBNIBhubaneswarPO Bhimpur-Padanpur Via Jatni District Khurda Odisha 752050 India
| | - Ankita Bal
- School of Chemical SciencesNational Institute of Science Education and Research (NISER)HBNIBhubaneswarPO Bhimpur-Padanpur Via Jatni District Khurda Odisha 752050 India
| | - Prasenjit Mal
- School of Chemical SciencesNational Institute of Science Education and Research (NISER)HBNIBhubaneswarPO Bhimpur-Padanpur Via Jatni District Khurda Odisha 752050 India
| |
Collapse
|
7
|
Facchetti G, Bucci R, Fusè M, Rimoldi I. Asymmetric Hydrogenation vs
Transfer Hydrogenation in the Reduction of Cyclic Imines. ChemistrySelect 2018. [DOI: 10.1002/slct.201802223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano, Via Golgi 19; 10033 Milano Italia
| | - Raffaella Bucci
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano, Via Golgi 19; 10033 Milano Italia
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7; 56126 Pisa Italia
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano, Via Golgi 19; 10033 Milano Italia
| |
Collapse
|
8
|
Singh FV, Kole PB, Mangaonkar SR, Shetgaonkar SE. Synthesis of spirocyclic scaffolds using hypervalent iodine reagents. Beilstein J Org Chem 2018; 14:1778-1805. [PMID: 30112083 PMCID: PMC6071689 DOI: 10.3762/bjoc.14.152] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/18/2018] [Indexed: 01/13/2023] Open
Abstract
Hypervalent iodine reagents have been developed as highly valuable reagents in synthetic organic chemistry during the past few decades. These reagents have been identified as key replacements of various toxic heavy metals in organic synthesis. Various synthetically and biologically important scaffolds have been developed using hypervalent iodine reagents either in stoichiometric or catalytic amounts. In addition, hypervalent iodine reagents have been employed for the synthesis of spirocyclic scaffolds via dearomatization processes. In this review, various approaches for the synthesis of spirocyclic scaffolds using hypervalent iodine reagents are covered including their stereoselective synthesis. Additionally, the applications of these reagents in natural product synthesis are also covered.
Collapse
Affiliation(s)
- Fateh V Singh
- Chemistry Division, School of Advanced Sciences (SAS), VIT University, Chennai Campus, Chennai-600 127, Tamil Nadu, India
| | - Priyanka B Kole
- Chemistry Division, School of Advanced Sciences (SAS), VIT University, Chennai Campus, Chennai-600 127, Tamil Nadu, India
| | - Saeesh R Mangaonkar
- Chemistry Division, School of Advanced Sciences (SAS), VIT University, Chennai Campus, Chennai-600 127, Tamil Nadu, India
| | - Samata E Shetgaonkar
- Chemistry Division, School of Advanced Sciences (SAS), VIT University, Chennai Campus, Chennai-600 127, Tamil Nadu, India
| |
Collapse
|
9
|
|
10
|
Hu C, Zhang Z, Gao W, Zhang G, Liu T, Liu Q. PIFA-promoted intramolecular oxidative C(aryl)-H amidation reaction: Synthesis of quinolino[3,4- b ]quinoxalin-6(5 H )-ones. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Chemoselective synthesis and cytotoxic activity of a series of novel benzo[1,4]oxazin-3-one derivatives. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Mane A, Salokhe P, More P, Salunkhe R. An efficient practical chemo-enzymatic protocol for the synthesis of pyrazoles in aqueous medium at ambient temperature. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Synthesis and biological evaluation of novel tamoxifen analogues. Bioorg Med Chem 2013; 21:4120-31. [DOI: 10.1016/j.bmc.2013.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/02/2013] [Accepted: 05/08/2013] [Indexed: 12/20/2022]
|
14
|
Rudyakova EV, Samultsev DO, Levanova EP, Levkovskaya GG. Synthesis of previously unknown 3,3′-linearly linked sulfur- and selenium-containing bispyrazoles by reactions of 3-alkenyl-5-chloropyrazoles with bischalcogenols. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2013. [DOI: 10.1134/s1070428013050175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Rusakov YY, Krivdin LB, Papernaya LK, Shatrova AA. Stereochemical behavior of (77)Se-(1)H spin-spin coupling constants in pyrazolyl-1,3-diselenanes and 1,2-diselenolane. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2012; 50:169-173. [PMID: 22367742 DOI: 10.1002/mrc.2863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 10/31/2011] [Indexed: 05/31/2023]
Abstract
Conformational study of five derivatives of 2-(pyrazol-4-yl)-1,3-diselenane together with related 1,2-diselenolane in respect to the stereochemical trends of geminal and vicinal (77)Se-(1)H spin-spin coupling constants has been carried out by means of high-level theoretical calculations in combination with experiment. The marked dihedral angle dependences for both types of couplings accounted for the lone pair effect in the case of geminal coupling constants and the Karplus-type relationship for vicinal couplings have been established, which is of major importance for the stereochemical analysis of saturated selenium containing heterocycles.
Collapse
Affiliation(s)
- Yury Yu Rusakov
- Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | | | | | | |
Collapse
|
16
|
A facile synthesis of sugar-pyrazole derivatives. Carbohydr Res 2011; 346:1814-9. [DOI: 10.1016/j.carres.2011.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 11/20/2022]
|
17
|
3-Alkenyl-5-chloropyrazoles: expedient synthesis via heterocyclization of 1,1-dichloro-4-halo-1-alken-3-ones with hydrazines. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
El-Dahshan A, Nazir S, Ahsanullah, Ansari FL, Rademann J. Peptide-Heterocycle Chimera: New Classes of More Drug-Like Peptidomimetics by Ligations of Peptide-Bis(electrophiles) with Various Bis(nucleophiles). European J Org Chem 2010. [DOI: 10.1002/ejoc.201001206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Yet L. Chapter 5.4: Five-Membered Ring Systems: With More than One N Atom. PROGRESS IN HETEROCYCLIC CHEMISTRY 2009. [DOI: 10.1016/s0959-6380(09)70035-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|