1
|
Shen L, Chen F, Huang Q, Tan H, Ling Y, Qiu W, Zhou M, Liu D, Qiao Y, Wang L, Wang C, Wu W. Effect of light treatmeat on oxidation and flavour of dry-cured Wuchang fish. Food Chem X 2024; 22:101464. [PMID: 38817983 PMCID: PMC11137512 DOI: 10.1016/j.fochx.2024.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Lighting conditions are an important factor affecting dry-cured products. This study investigated the effects of treatments with different light intensities (0 lx, 1000 lx, 25000 lx) and different light sources including red light, blue light, UV-light on oxidation leve and flavor change in dry-cured Wuchang fish. The results showed that dry-cured Wuchang fish exhibited an attractive brown-yellow color, the highest oxidation degree of myoglobin (Mb), the highest fat oxidation under the light conditions of 25000 lx light intensity and UV-light irradiation. This phenomenon was observed that the degree of Mb oxidation was increased, while the degree of fat oxidation was increased. At 25000 lx light intensity and UV-light irradiation, dry-cured Wuchang fish showed an ignificantly decreased fatty acid conten (especially oleic acid and linoleic acid), significantly increased characteristic volatile compound contents (22 for 25,000 lx light intensity and 27 for UV-light irradiation), which contributed to the improvement of quality stability of dry-cured Wuchang fish. Our findings provide theoretical support for the industrial application of exogenous light in dry-cured Wuchang fish.
Collapse
Affiliation(s)
- Lingwei Shen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei University of Technology, School of Biological and Food, Wuhan 430068, China
| | - Fangxue Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Qi Huang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei University of Technology, School of Biological and Food, Wuhan 430068, China
| | - Hongyuan Tan
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuzhao Ling
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wenxing Qiu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei University of Technology, School of Biological and Food, Wuhan 430068, China
| | - Mingzhu Zhou
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei University of Technology, School of Biological and Food, Wuhan 430068, China
| | - Dongyin Liu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chao Wang
- Hubei University of Technology, School of Biological and Food, Wuhan 430068, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
2
|
Kolmakov K, Winter FR, Sednev MV, Ghosh S, Borisov SM, Nizovtsev AV. Everlasting rhodamine dyes and true deciding factors in their STED microscopy performance. Photochem Photobiol Sci 2020; 19:1677-1689. [PMID: 33179701 DOI: 10.1039/d0pp00304b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The authors took an independent and closer look at the family of red-emitting rhodamine dyes known for a decade due to their excellent performance in STED microscopy. After the family was further extended, the true grounds of this performance became clear. Small-molecule protective agents and/or auxiliary groups were attached at two different sites of the dye's scaffold. Thus, a rhodamine core, which is already quite photostable as it is, and an intramolecular stabilizer - a 4-nitrobenzyl or a 4-nitrobenzylthio group were combined to give potentially "everlasting dyes". The fluorescence quantum yields (Φf) and the fluorescence lifetimes (τ) of the modified dyes were thoroughly measured with comparison to those of the parent dyes. The correlation of their STED performance with photostability and fluorescence color stability under illumination in water were explored. Unexpectedly, the anaerobic GSDIM (GOC) buffer proved unhelpful with respect to STED performance. It was demonstrated that, even dyes with a Φf of only 14-17% allow STED imaging with a sufficient photon budget and good signal-to-noise ratio. For the dyes with photostabilizing groups (PSG) the Φf values are 4-5 times lower than in the reference dyes, and lifetimes τ are also strongly reduced. Noteworthy are very high fluorescence color stability and constant or even increasing fluorescence signal under photobleaching in bulk aqueous solutions, which suggests a sacrificing role of the 4-nitrobenzyl-containing moieties. Straightforward and improved recipes for "last-minute" modifications and preparations of "self-healing" red-emitting fluorescent tags are described.
Collapse
Affiliation(s)
- Kirill Kolmakov
- glyXera GmbH, Brenneckestraße 20 * ZENIT II/Haus 66, D-39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
3
|
Méndez A, Valdez-Camacho JR, Escalante J. Photooxidation of 2-( tert-Butyl)-3-Methyl-2,3,5,6,7,8-Hexahydroquinazolin-4( 1H)-one, an Example of Singlet Oxygen ene Reaction. Molecules 2020; 25:molecules25215008. [PMID: 33137910 PMCID: PMC7662339 DOI: 10.3390/molecules25215008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022] Open
Abstract
Singlet oxygen ene reactions produce 2-(tert-butyl)-4a-hydroperoxy-3-methyl-2,4a, 5,6,7,8-hexahydroquinazolin-4(3H)-one quantitatively during diffusion crystallization of 2-(tert-butyl)-3-methyl-2,3,5,6,7,8-hexahydroquinazolin-4(1H)-one in n-hexane/CH2Cl2 solvent mixture. To confirm this photo-oxidation, a 1H-NMR study in CDCl3 was performed with exposure to ambient conditions (light and oxygen), with neither additional reactants nor catalysts. A theoretical study at the B3LyP/6311++G** level using the QST2 method of locating transition states suggests a two-step mechanism where the intermediate, which unexpectedly did not come from the peroxide intermediate, has a low activation energy.
Collapse
|
4
|
Wright AE, Roberts JC, Guzmán EA, Pitts TP, Pomponi SA, Reed JK. Analogues of the Potent Antitumor Compound Leiodermatolide from a Deep-Water Sponge of the Genus Leiodermatium. JOURNAL OF NATURAL PRODUCTS 2017; 80:735-739. [PMID: 28135095 PMCID: PMC8327308 DOI: 10.1021/acs.jnatprod.6b01140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Two new analogues of the potent antitumor compound leiodermatolide, which we call leiodermatolides B and C, have been isolated from specimens of a deep-water sponge of the genus Leiodermatium collected off Florida. The compounds were purified using standard chromatographic methods, and the structures defined through interpretation of the HRMS and 1D and 2D NMR data. Leiodermatolide B (2) lacks the C-21 hydroxy group found in leiodermatolide and has equal potency as the parent compound, providing a simpler analogue for possible clinical development. It inhibits the proliferation of the AsPC-1 human pancreatic adenocarcinoma cell line with an IC50 of 43 nM. Leiodermatolide C (3) has a modified macrolide ring and is over 85-fold less potent with an IC50 of 3.7 μM against the same cell line. These compounds add to the knowledge of the pharmacophore of this class of potent antitumor agents.
Collapse
Affiliation(s)
- Amy E. Wright
- To whom correspondence should be addressed. ; Phone: 772-242-2459
| | | | | | | | | | | |
Collapse
|
5
|
Eske A, Goldfuss B, Griesbeck AG, de Kiff A, Kleczka M, Leven M, Neudörfl JM, Vollmer M. Ene-diene transmissive cycloaddition reactions with singlet oxygen: the vinylogous gem effect and its use for polyoxyfunctionalization of dienes. J Org Chem 2014; 79:1818-29. [PMID: 24475891 DOI: 10.1021/jo5000434] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The singlet oxygen reactivities and regioselectivities of the model compounds 1b-d were compared with those of the geminal (gem) selectivity model ethyl tiglate (1a). The kinetic cis effect is k(E)/k(Z) = 5.2 for the tiglate/angelate system 1a/1a' without a change in the high gem regioselectivity. Further conjugation to vinyl groups enabled mode-selective processes, namely, [4 + 2] cycloadditions versus ene reactions. The site-specific effects of methylation on the mode selectivity and the regioselectivity of the ene reaction were studied for dienes 1e-g. A vinylogous gem effect was observed for the γ,δ-dimethylated and α,γ,δ-trimethylated substrates 1h and 1i, respectively. The corresponding phenylated substrates 1j-l showed similar mode selectivity, as monomethylated 1j exhibited exclusively [4 + 2] reactivity while the tandem products 12 and 14 were isolated from the di- and trimethylated substrates 1k and 1l, respectively. The vinylogous gem effect favors the formation of 1,3-dienes from the substrates, and thus, secondary singlet oxygen addition was observed to give hydroperoxy-1,2-dioxenes 19 and 20 in an ene-diene transmissive cycloaddition sequence. These products were reduced to give alcohols (16, 17, and 18) or furans (24 and 25), respectively, or treated with titanium(IV) alkoxides to give the epoxy alcohols 26 and 27. The vinylogous gem effect is rationalized by DFT calculations showing that biradicals are the low-energy intermediates and that no reaction path bifurcations compete.
Collapse
Affiliation(s)
- Angelika Eske
- Department of Chemistry, University of Cologne , Greinstr. 4, D-50939 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Terent'ev AO, Borisov DA, Vil’ VA, Dembitsky VM. Synthesis of five- and six-membered cyclic organic peroxides: Key transformations into peroxide ring-retaining products. Beilstein J Org Chem 2014; 10:34-114. [PMID: 24454562 PMCID: PMC3896255 DOI: 10.3762/bjoc.10.6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/16/2013] [Indexed: 12/16/2022] Open
Abstract
The present review describes the current status of synthetic five and six-membered cyclic peroxides such as 1,2-dioxolanes, 1,2,4-trioxolanes (ozonides), 1,2-dioxanes, 1,2-dioxenes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes. The literature from 2000 onwards is surveyed to provide an update on synthesis of cyclic peroxides. The indicated period of time is, on the whole, characterized by the development of new efficient and scale-up methods for the preparation of these cyclic compounds. It was shown that cyclic peroxides remain unchanged throughout the course of a wide range of fundamental organic reactions. Due to these properties, the molecular structures can be greatly modified to give peroxide ring-retaining products. The chemistry of cyclic peroxides has attracted considerable attention, because these compounds are used in medicine for the design of antimalarial, antihelminthic, and antitumor agents.
Collapse
Key Words
- 1,2,4,5-tetraoxanes
- 1,2,4-trioxanes
- 1,2,4-trioxolanes
- 1,2-dioxanes
- 1,2-dioxenes
- 1,2-dioxolanes
- cyclic peroxides
- ozonides
Collapse
Affiliation(s)
- Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Borisov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Vera A Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Valery M Dembitsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
- Institute for Drug Research, P.O. Box 12065, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
7
|
Comparison of the singlet oxygen ene reactions of cyclic versus acyclic β,γ-unsaturated ketones: an experimental and computational study. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.03.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Geer MF, Walla MD, Solntsev KM, Strassert CA, Shimizu LS. Self-assembled benzophenone bis-urea macrocycles facilitate selective oxidations by singlet oxygen. J Org Chem 2013; 78:5568-78. [PMID: 23672574 DOI: 10.1021/jo400685u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This manuscript investigates how incorporation of benzophenone, a well-known triplet sensitizer, within a bis-urea macrocycle, which self-assembles into a columnar host, influences its photophysical properties and affects the reactivity of bound guest molecules. We further report the generation of a remarkably stable organic radical. As expected, UV irradiation of the host suspended in oxygenated solvents efficiently generates singlet oxygen similar to the parent benzophenone. In addition, this host can bind guests such as 2-methyl-2-butene and cumene to form stable solid host-guest complexes. Subsequent UV irradiation of these complexes facilitated the selective oxidation of 2-methyl-2-butene into the allylic alcohol, 3-methyl-2-buten-1-ol, at 90% selectivity as well as the selective reaction of cumene to the tertiary alcohol, α,α'-dimethyl benzyl alcohol, at 63% selectivity. However, these products usually arise through radical pathways and are not observed in the presence of benzophenone in solution. In contrast, typical reactions with benzophenone result in the formation of the reactive singlet oxygen that reacts with alkenes to form endoperoxides, diooxetanes, or hydroperoxides, which are not observed in our system. Our results suggest that the confinement, the formation of a stable radical species, and the singlet oxygen photoproduction are responsible for the selective oxidation processes. A greater understanding of the mechanism of this selective oxidation could lead to development of greener oxidants.
Collapse
Affiliation(s)
- Michael F Geer
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | | | | | | |
Collapse
|
9
|
Teasdale ME, Shearer TL, Engel S, Alexander TS, Fairchild CR, Prudhomme J, Torres M, Le Roch K, Aalbersberg W, Hay ME, Kubanek J. Bromophycoic acids: bioactive natural products from a Fijian red alga Callophycus sp. J Org Chem 2012; 77:8000-6. [PMID: 22920243 DOI: 10.1021/jo301246x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Bioassay-guided fractionation of extracts from a Fijian red alga in the genus Callophycus resulted in the isolation of five new compounds of the diterpene-benzoate class. Bromophycoic acids A-E (1-5) were characterized by NMR and mass spectroscopic analyses and represent two novel carbon skeletons, one with an unusual proposed biosynthesis. These compounds display a range of activities against human tumor cell lines, malarial parasites, and bacterial pathogens including low micromolar suppression of MRSA and VREF.
Collapse
Affiliation(s)
- Margaret E Teasdale
- School of Biology, Aquatic Chemical Ecology Center, Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|