1
|
Machauer R, Lueoend R, Hurth K, Veenstra SJ, Rueeger H, Voegtle M, Tintelnot-Blomley M, Rondeau JM, Jacobson LH, Laue G, Beltz K, Neumann U. Discovery of Umibecestat (CNP520): A Potent, Selective, and Efficacious β-Secretase (BACE1) Inhibitor for the Prevention of Alzheimer's Disease. J Med Chem 2021; 64:15262-15279. [PMID: 34648711 DOI: 10.1021/acs.jmedchem.1c01300] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After identification of lead compound 6, 5-amino-1,4-oxazine BACE1 inhibitors were optimized in order to improve potency, brain penetration, and metabolic stability. Insertion of a methyl and a trifluoromethyl group at the 6-position of the 5-amino-1,4-oxazine led to 8 (NB-360), an inhibitor with a pKa of 7.1, a very low P-glycoprotein efflux ratio, and excellent pharmacological profile, enabling high central nervous system penetration and exposure. Fur color changes observed with NB-360 in efficacy studies in preclinical animal models triggered further optimization of the series. Herein, we describe the steps leading to the discovery of 3-chloro-5-trifluoromethyl-pyridine-2-carboxylic acid [6-((3R,6R)-5-amino-3,6-dimethyl-6-trifluoromethyl-3,6-dihydro-2H-[1,4]oxazin-3-yl)-5-fluoro-pyridin-2-yl]amide 15 (CNP520, umibecestat), an inhibitor with superior BACE1/BACE2 selectivity and pharmacokinetics. CNP520 reduced significantly Aβ levels in mice and rats in acute and chronic treatment regimens without any side effects and thus qualified for Alzheimer's disease prevention studies in the clinic.
Collapse
Affiliation(s)
- Rainer Machauer
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Rainer Lueoend
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Konstanze Hurth
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Siem J Veenstra
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Heinrich Rueeger
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Markus Voegtle
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | | | - Jean-Michel Rondeau
- Chemical Biology and Therapeutics, Structural Biology Platform, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Laura H Jacobson
- Department of Neuroscience, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Grit Laue
- Pharmacokinetic-Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Karen Beltz
- Pharmacokinetic-Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Ulf Neumann
- Department of Neuroscience, Novartis Pharma AG, CH-4056 Basel, Switzerland
| |
Collapse
|
2
|
Balkenhohl M, Jangra H, Makarov IS, Yang S, Zipse H, Knochel P. A Predictive Model Towards Site-Selective Metalations of Functionalized Heterocycles, Arenes, Olefins, and Alkanes using TMPZnCl⋅LiCl. Angew Chem Int Ed Engl 2020; 59:14992-14999. [PMID: 32400069 PMCID: PMC7497272 DOI: 10.1002/anie.202005372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 01/02/2023]
Abstract
The development of a predictive model towards site-selective deprotometalation reactions using TMPZnCl⋅LiCl is reported (TMP=2,2,6,6-tetramethylpiperidinyl). The pKa values of functionalized N-, S-, and O-heterocycles, arenes, alkenes, or alkanes were calculated and compared to the experimental deprotonation sites. Large overlap (>80 %) between the calculated and empirical deprotonation sites was observed, showing that thermodynamic factors strongly govern the metalation regioselectivity. In the case of olefins, calculated frozen state energies of the deprotonated substrates allowed a more accurate prediction. Additionally, various new N-heterocycles were analyzed and the metalation regioselectivities rationalized using the predictive model.
Collapse
Affiliation(s)
- Moritz Balkenhohl
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Harish Jangra
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Ilya S. Makarov
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Shu‐Mei Yang
- Department of ChemistryNational (Taiwan) Normal University88, Sec. 4, Tingchow RoadTaipei11677Taiwan, Republic of China
| | - Hendrik Zipse
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Paul Knochel
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|
3
|
Balkenhohl M, Jangra H, Makarov IS, Yang S, Zipse H, Knochel P. A Predictive Model Towards Site‐Selective Metalations of Functionalized Heterocycles, Arenes, Olefins, and Alkanes using TMPZnCl⋅LiCl. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Moritz Balkenhohl
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 Munich Germany
| | - Harish Jangra
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 Munich Germany
| | - Ilya S. Makarov
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 Munich Germany
| | - Shu‐Mei Yang
- Department of Chemistry National (Taiwan) Normal University 88, Sec. 4, Tingchow Road Taipei 11677 Taiwan, Republic of China
| | - Hendrik Zipse
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 Munich Germany
| | - Paul Knochel
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 Munich Germany
| |
Collapse
|
4
|
Abstract
Azines, which are six-membered aromatic compounds containing one or more nitrogen atoms, serve as ubiquitous structural cores of aromatic species with important applications in biological and materials sciences. Among a variety of synthetic approaches toward azines, C-H functionalization represents the most rapid and atom-economical transformation, and it is advantageous for the late-stage functionalization of azine-containing functional molecules. Since azines have several C-H bonds with different reactivities, the development of new reactions that allow for the functionalization of azines in a regioselective fashion has comprised a central issue. This review describes recent advances in the C-H functionalization of azines categorized as follows: (1) SNAr reactions, (2) radical reactions, (3) deprotonation/functionalization, and (4) metal-catalyzed reactions.
Collapse
Affiliation(s)
- Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, and ‡JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University , Chikusa, Nagoya 464-8602, Japan
| | - Shuya Yamada
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, and ‡JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University , Chikusa, Nagoya 464-8602, Japan
| | - Takeshi Kaneda
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, and ‡JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University , Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, and ‡JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University , Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
5
|
Lin H, Yamashita DS, Zeng J, Xie R, Verma S, Luengo JI, Rhodes N, Zhang S, Robell KA, Choudhry AE, Lai Z, Kumar R, Minthorn EA, Brown KK, Heerding DA. 2,3,5-Trisubstituted pyridines as selective AKT inhibitors. Part II: Improved drug-like properties and kinase selectivity from azaindazoles. Bioorg Med Chem Lett 2010; 20:679-83. [DOI: 10.1016/j.bmcl.2009.11.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 11/24/2022]
|
6
|
Lin H, Yamashita DS, Xie R, Zeng J, Wang W, Leber J, Safonov IG, Verma S, Li M, Lafrance L, Venslavsky J, Takata D, Luengo JI, Kahana JA, Zhang S, Robell KA, Levy D, Kumar R, Choudhry AE, Schaber M, Lai Z, Brown BS, Donovan BT, Minthorn EA, Brown KK, Heerding DA. Tetrasubstituted pyridines as potent and selective AKT inhibitors: Reduced CYP450 and hERG inhibition of aminopyridines. Bioorg Med Chem Lett 2009; 20:684-8. [PMID: 20006500 DOI: 10.1016/j.bmcl.2009.11.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
The synthesis and evaluation of tetrasubstituted aminopyridines, bearing novel azaindazole hinge binders, as potent AKT inhibitors are described. Compound 14c was identified as a potent AKT inhibitor that demonstrated reduced CYP450 inhibition and an improved developability profile compared to those of previously described trisubstituted pyridines. It also displayed dose-dependent inhibition of both phosphorylation of GSK3beta and tumor growth in a BT474 tumor xenograft model in mice.
Collapse
Affiliation(s)
- Hong Lin
- Oncology Medicinal Chemistry, GlaxoSmithKline, 1250 S. Collegeville Rd., Collegeville, PA 19426, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Culf AS, Werner-Zwanziger U, Robertson KN, Chen B, Čuperlović-Culf M, Barnett DA, Ouellette RJ. Polymeric and polymer-ligated spirobicyclic zwitterionic Janovsky complexes. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.03.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Gerstenberger BS, Rauckhorst MR, Starr JT. One-Pot Synthesis of N-Arylpyrazoles from Arylhalides. Org Lett 2009; 11:2097-100. [DOI: 10.1021/ol900515a] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brian S. Gerstenberger
- Pfizer Global Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340
| | - Mark R. Rauckhorst
- Pfizer Global Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340
| | - Jeremy T. Starr
- Pfizer Global Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340
| |
Collapse
|