1
|
Groleau R, Chapman RSL, Lowe JP, Lyall CL, Kociok-Köhn G, James TD, Bull SD. BINOL as a Chiral Solvating Agent for Sulfiniminoboronic Acids. Anal Chem 2023; 95:16801-16809. [PMID: 37931004 PMCID: PMC10666087 DOI: 10.1021/acs.analchem.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023]
Abstract
1H NMR spectroscopic studies using BINOL as a chiral solvating agent (CSA) for a scalemic sulfiniminoboronic acid (SIBA) have revealed concentration- and enantiopurity-dependent variations in the chemical shifts of diagnostic imine protons used to determine enantiopurity levels. 11B/15N NMR spectroscopic studies and X-ray structural investigations revealed that unlike other iminoboronate species, BINOL-SIBA assemblies do not contain N-B coordination bonds, with 1H NMR NOESY experiments indicating that intermolecular H-bonding networks between BINOL and the SIBA analyte are responsible for these variations. These effects can lead to diastereomeric signal overlap at certain er values that could potentially lead to enantiopurity/configuration misassignments. Consequently, it is recommended that hydrogen-bonding-CSA-based 1H NMR protocols should be repeated using both CSA enantiomers to ensure that any concentration- and/or er-dependent variations in diagnostic chemical shifts are accounted for when determining the enantiopurity of a scalemic analyte.
Collapse
Affiliation(s)
- Robin
R. Groleau
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | | | - John P. Lowe
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Catherine L. Lyall
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | | | - Tony D. James
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xianxiang 453007, China
| | - Steven D. Bull
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| |
Collapse
|
2
|
Groleau RR, James TD, Bull SD. The Bull-James assembly: Efficient iminoboronate complex formation for chiral derivatization and supramolecular assembly. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Groleau RR, Chapman RSL, Ley-Smith H, Liu L, James TD, Bull SD. A Three-Component Derivatization Protocol for Determining the Enantiopurity of Sulfinamides by 1H and 19F NMR Spectroscopy. J Org Chem 2020; 85:1208-1215. [PMID: 31774680 DOI: 10.1021/acs.joc.9b02473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A practically simple three-component chiral derivatization protocol has been developed to determine the enantiopurity of eight S-chiral sulfinamides by 1H and 19F NMR spectroscopic analysis, based on their treatment with a 2-formylphenylboronic acid template and enantiopure pinanediol to afford a mixture of diastereomeric sulfiniminoboronate esters whose diastereomeric ratio is an accurate reflection of the enantiopurity of the parent sulfinamide.
Collapse
Affiliation(s)
- Robin R Groleau
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , U.K
| | - Robert S L Chapman
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , U.K
| | - Harry Ley-Smith
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , U.K
| | - Liyuan Liu
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , U.K
| | - Tony D James
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , U.K
| | - Steven D Bull
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , U.K
| |
Collapse
|
4
|
Lima YR, Peglow TJ, Nobre PC, Campos PT, Perin G, Lenardão EJ, Silva MS. Chalcogen‐Containing Diols: A Novel Chiral Derivatizing Agent for
77
Se and
125
Te NMR Chiral Recognition of Primary Amines. ChemistrySelect 2019. [DOI: 10.1002/slct.201900097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yanka Rocha Lima
- Laboratório de Síntese Orgânica Limpa – LASOLCentro de Ciências Químicas, Farmacêuticas e de Alimentos – CCQFAUniversidade Federal de Pelotas – UFPel, Capão do Leão-RS, Brazil
| | - Thiago Jacobsen Peglow
- Laboratório de Síntese Orgânica Limpa – LASOLCentro de Ciências Químicas, Farmacêuticas e de Alimentos – CCQFAUniversidade Federal de Pelotas – UFPel, Capão do Leão-RS, Brazil
| | - Patrick Carvalho Nobre
- Laboratório de Síntese Orgânica Limpa – LASOLCentro de Ciências Químicas, Farmacêuticas e de Alimentos – CCQFAUniversidade Federal de Pelotas – UFPel, Capão do Leão-RS, Brazil
| | | | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa – LASOLCentro de Ciências Químicas, Farmacêuticas e de Alimentos – CCQFAUniversidade Federal de Pelotas – UFPel, Capão do Leão-RS, Brazil
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa – LASOLCentro de Ciências Químicas, Farmacêuticas e de Alimentos – CCQFAUniversidade Federal de Pelotas – UFPel, Capão do Leão-RS, Brazil
| | - Márcio S. Silva
- Laboratório de Síntese Orgânica Limpa – LASOLCentro de Ciências Químicas, Farmacêuticas e de Alimentos – CCQFAUniversidade Federal de Pelotas – UFPel, Capão do Leão-RS, Brazil
| |
Collapse
|
5
|
Brittain WDG, Chapin BM, Zhai W, Lynch VM, Buckley BR, Anslyn EV, Fossey JS. The Bull-James assembly as a chiral auxiliary and shift reagent in kinetic resolution of alkyne amines by the CuAAC reaction. Org Biomol Chem 2018; 14:10778-10782. [PMID: 27604036 DOI: 10.1039/c6ob01623e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Bull-James boronic acid assembly is used simultaneously as a chiral auxiliary for kinetic resolution and as a chiral shift reagent for in situ enantiomeric excess (ee) determination by 1H NMR spectroscopy. Chiral terminal alkyne-containing amines, and their corresponding chiral triazoles formed via CuAAC, were probed in situ. Selectivity factors of up to s = 4 were imparted and measured, accurate to within ±3% when compared to chiral GC.
Collapse
Affiliation(s)
- William D G Brittain
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK. and Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Brette M Chapin
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK. and Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Wenlei Zhai
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK. and Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Benjamin R Buckley
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| |
Collapse
|
6
|
Oliveira SS, Cunha RL, Silva MS. 77Se and 125Te NMR spectroscopy for enantiopurity determination of chalcogen amines. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Tickell DA, Lampard EV, Lowe JP, James TD, Bull SD. A Protocol for NMR Analysis of the Enantiomeric Excess of Chiral Diols Using an Achiral Diboronic Acid Template. J Org Chem 2016; 81:6795-9. [DOI: 10.1021/acs.joc.6b01005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David A. Tickell
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K
| | - Emma V. Lampard
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K
| | - John P. Lowe
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K
| | - Tony D. James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K
| | - Steven D. Bull
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K
| |
Collapse
|
8
|
James TD. Self and directed assembly: people and molecules. Beilstein J Org Chem 2016; 12:391-405. [PMID: 27340435 PMCID: PMC4902004 DOI: 10.3762/bjoc.12.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/07/2016] [Indexed: 11/23/2022] Open
Abstract
Self-assembly and directed-assembly are two very important aspects of supramolecular chemistry. As a young postgraduate student working in Canada with Tom Fyles my introduction to Supramolecular Chemistry was through the self-assembly of phospholipid membranes to form vesicles for which we were developing unimolecular and self-assembling transporter molecules. The next stage of my development as a scientist was in Japan with Seiji Shinkai where in a “Eureka” moment, the boronic acid templating unit (directed-assembly) of Wulff was combined with photoinduced electron transfer systems pioneered by De Silva. The result was a turn-on fluorescence sensor for saccharides; this simple result has continued to fuel my research to the present day. Throughout my career as well as assembling molecules, I have enjoyed bringing together researchers in order to develop collaborative networks. This is where molecules meet people resulting in assemblies worth more than the individual “molecule” or “researcher”. My role in developing networks with Japan was rewarded by the award of a Daiwa-Adrian Prize in 2013 and I was recently rewarded for developing networks with China with an Inaugural CASE Prize in 2015.
Collapse
Affiliation(s)
- Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
9
|
Archer RM, Hutchby M, Winn CL, Fossey JS, Bull SD. A chiral ligand mediated aza-conjugate addition strategy for the enantioselective synthesis of β-amino esters that contain hydrogenolytically sensitive functionality. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Gibson SM, Lanigan RM, Benhamou L, Aliev AE, Sheppard TD. A lactate-derived chiral aldehyde for determining the enantiopurity of enantioenriched primary amines. Org Biomol Chem 2015. [PMID: 26219531 DOI: 10.1039/c5ob01398d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we describe the use of a chiral aldehyde derived from lactate esters for determining the enantiopurity of primary amines, via the formation of diastereomeric imines.
Collapse
Affiliation(s)
| | | | - Laure Benhamou
- Department of Chemistry
- University College London
- London
- UK
| | - Abil E. Aliev
- Department of Chemistry
- University College London
- London
- UK
| | | |
Collapse
|
11
|
Mishra SK, Suryaprakash N. A simple and rapid approach for testing enantiopurity of hydroxy acids and their derivatives using 1H NMR spectroscopy. RSC Adv 2015. [DOI: 10.1039/c5ra11919g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A rapid and the simple chiral derivatizing protocol involving the coupling of 2-formylphenylboronic acid and an optically pure [1,1-binaphthalene]-2,2-diamine is introduced for the accurate determination of the enantiopurity of hydroxy acids and their derivatives.
Collapse
Affiliation(s)
- Sandeep Kumar Mishra
- NMR Research Centre and Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - N. Suryaprakash
- NMR Research Centre and Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
12
|
Tickell DA, Mahon MF, Bull SD, James TD. A Simple Protocol for NMR Analysis of the Enantiomeric Purity of Chiral Hydroxylamines. Org Lett 2013; 15:860-3. [DOI: 10.1021/ol303566k] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- David A. Tickell
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA27AY, U.K
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA27AY, U.K
| | - Steven D. Bull
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA27AY, U.K
| | - Tony D. James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA27AY, U.K
| |
Collapse
|
13
|
Chiral Derivatizing Agents, Macrocycles, Metal Complexes, and Liquid Crystals for Enantiomer Differentiation in NMR Spectroscopy. Top Curr Chem (Cham) 2013; 341:1-68. [DOI: 10.1007/128_2013_433] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Fossey JS, D'Hooge F, van den Elsen JMH, Pereira Morais MP, Pascu SI, Bull SD, Marken F, Jenkins ATA, Jiang YB, James TD. The development of boronic acids as sensors and separation tools. CHEM REC 2012; 12:464-78. [PMID: 22791631 DOI: 10.1002/tcr.201200006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Indexed: 01/28/2023]
Abstract
Synthetic receptors for diols that incorporate boronic acid motifs have been developed as new sensors and separation tools. Utilizing the reversible interactions of diols with boronic acids to form boronic esters under new binding regimes has provided new hydrogel constructs that have found use as dye-displacement sensors and electrophoretic separation tools; similarly, molecular boronic-acid-containing chemosensors were constructed that offer applications in the sensing of diols. This review provides a somewhat-personal perspective of developments in boronic-acid-mediated sensing and separation, placed in the context of the seminal works of others in the area, as well as offering a concise summary of the contributions of the co-authors in the area.
Collapse
Affiliation(s)
- John S Fossey
- The School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK..
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jin H, Thangadurai TD, Jo SC, Jin D, Cui S, Lee YI. On-line chiral analysis of benzylmercapturic acid and phenylmercapturic acid in human urine using UPLC-QToF mass spectrometry with the kinetic method. Microchem J 2012. [DOI: 10.1016/j.microc.2012.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
|
17
|
Wenzel TJ, Chisholm CD. Using NMR spectroscopic methods to determine enantiomeric purity and assign absolute stereochemistry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 59:1-63. [PMID: 21600355 DOI: 10.1016/j.pnmrs.2010.07.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/28/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Thomas J Wenzel
- Department of Chemistry, Bates College, Lewiston, Maine 04240, USA.
| | | |
Collapse
|
18
|
Pérez-Fuertes Y, Taylor JE, Tickell DA, Mahon MF, Bull SD, James TD. Asymmetric Strecker synthesis of α-arylglycines. J Org Chem 2011; 76:6038-47. [PMID: 21627154 DOI: 10.1021/jo200528s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A practically simple three-component Strecker reaction for the asymmetric synthesis of enantiopure α-arylglycines has been developed. Addition of a range of aryl-aldehydes to a solution of sodium cyanide and (S)-1-(4-methoxyphenyl)ethylamine affords highly crystalline (S,S)-α-aminonitriles that are easily obtained in diastereomerically pure form. Heating the resultant (S,S)-α-aminonitriles in 6 M aqueous HCl at reflux resulted in cleavage of their chiral auxiliary fragments and concomitant hydrolysis of their nitrile groups to afford enantiopure (S)-α-arylglycines. The enantiopurities of these (S)-α-arylglycines were determined via derivatization of their corresponding methyl esters with 2-formylphenylboronic acid and (S)-BINOL, followed by (1)H NMR spectroscopic analysis of the resultant mixtures of diastereomeric iminoboronate esters.
Collapse
|
19
|
Nishiyabu R, Kubo Y, James TD, Fossey JS. Boronic acid building blocks: tools for self assembly. Chem Commun (Camb) 2011; 47:1124-50. [DOI: 10.1039/c0cc02921a] [Citation(s) in RCA: 411] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Elfeky S, Flower S, Masumoto N, D'Hooge F, Labarthe L, Chen W, Len C, James T, Fossey J. Diol Appended Quenchers for Fluorescein Boronic Acid. Chem Asian J 2010; 5:581-8. [DOI: 10.1002/asia.200900386] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Zhang X, Chi L, Ji S, Wu Y, Song P, Han K, Guo H, James TD, Zhao J. Rational Design of d-PeT Phenylethynylated-Carbazole Monoboronic Acid Fluorescent Sensors for the Selective Detection of α-Hydroxyl Carboxylic Acids and Monosaccharides. J Am Chem Soc 2009; 131:17452-63. [DOI: 10.1021/ja9060646] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, P.O. Box 40, 158 Zhongshan Road, Dalian University of Technology, Dalian 116012, P. R. China, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, P. R. China, and Department of Chemistry, University of Bath, Bath BA2
| | - Lina Chi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, P.O. Box 40, 158 Zhongshan Road, Dalian University of Technology, Dalian 116012, P. R. China, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, P. R. China, and Department of Chemistry, University of Bath, Bath BA2
| | - Shaomin Ji
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, P.O. Box 40, 158 Zhongshan Road, Dalian University of Technology, Dalian 116012, P. R. China, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, P. R. China, and Department of Chemistry, University of Bath, Bath BA2
| | - Yubo Wu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, P.O. Box 40, 158 Zhongshan Road, Dalian University of Technology, Dalian 116012, P. R. China, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, P. R. China, and Department of Chemistry, University of Bath, Bath BA2
| | - Peng Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, P.O. Box 40, 158 Zhongshan Road, Dalian University of Technology, Dalian 116012, P. R. China, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, P. R. China, and Department of Chemistry, University of Bath, Bath BA2
| | - Keli Han
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, P.O. Box 40, 158 Zhongshan Road, Dalian University of Technology, Dalian 116012, P. R. China, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, P. R. China, and Department of Chemistry, University of Bath, Bath BA2
| | - Huimin Guo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, P.O. Box 40, 158 Zhongshan Road, Dalian University of Technology, Dalian 116012, P. R. China, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, P. R. China, and Department of Chemistry, University of Bath, Bath BA2
| | - Tony D. James
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, P.O. Box 40, 158 Zhongshan Road, Dalian University of Technology, Dalian 116012, P. R. China, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, P. R. China, and Department of Chemistry, University of Bath, Bath BA2
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, P.O. Box 40, 158 Zhongshan Road, Dalian University of Technology, Dalian 116012, P. R. China, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, P. R. China, and Department of Chemistry, University of Bath, Bath BA2
| |
Collapse
|