1
|
Roy S. Prins-Friedel-Crafts Cyclization: Synthesis of Diversely Functionalized Six- Membered Oxacycles. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210114105020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prins cyclization is a well-established synthetic protocol to generate a wide range
of important oxygen heterocycles. It is a cyclization reaction performed by an oxocarbenium
ion that undergoes an intramolecular pi-bond attack to construct a new carbon-carbon bond.
When this cyclization process is conjugated with Friedel-Crafts reaction, it further expands
the synthetic potential by fabricating two different carbon-carbon bonds in one single reaction.
Different acid catalysts mediated the coupled Prins-Friedel-Crafts reaction which is conducted
both in stepwise as well as in tandem fashion. In the stepwise route, three different
reacting components were utilized whereas, the tandem methodology required proper modification
of the initial substrate molecule. An array of allylic, propargylic, other related alkenols,
and carbonyl reactants were employed to carry out the cyclization process. Several oxygenated
heterocycles equipped with diverse functionalities were constructed in a stereoselective manner which again
reinforced the significance of this cyclization protocol undoubtedly. The present mini-review highlights the utilization
of different one-pot stepwise Prins-Friedel-Crafts reactions and the subsequent development of cascade Prins-
Friedel-Crafts cyclization process to furnish intricate molecular architectures of vital six-membered oxacycles.
Collapse
Affiliation(s)
- Snigdha Roy
- Department of Chemistry, Banwarilal Bhalotia College, Asansol-713303, West Bengal, India
| |
Collapse
|
2
|
Kato M, Saito A. Domino Synthesis of 2,3-Dialkylidenetetrahydrofurans via Tandem Prins Cyclization-Skeletal Reorganization. Org Lett 2018; 20:4709-4712. [PMID: 30044103 DOI: 10.1021/acs.orglett.8b02114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A domino synthesis of 2,3-dialkylidenetetrahydrofurans based on Prins-type cyclization of 3,5-diynols and aldehydes is described. In the present reaction, skeletal reorganization of the Prins-cyclized intermediates proceeds via a ring-opening reaction followed by intramolecular (hemi)acetalization of the resulting 4-en-1-yn-3-ones. Furthermore, a representative product undergoes a Diels-Alder reaction with dimethyl acetylenedicarboxylate (DMAD) to afford a highly substituted 2,3-dihydrobenzofuran.
Collapse
Affiliation(s)
- Mizuki Kato
- Division of Applied Chemistry, Institute of Engineering , Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho , Koganei , Tokyo 184-8588 , Japan
| | - Akio Saito
- Division of Applied Chemistry, Institute of Engineering , Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho , Koganei , Tokyo 184-8588 , Japan
| |
Collapse
|
3
|
Liu L, Kaib PSJ, Tap A, List B. A General Catalytic Asymmetric Prins Cyclization. J Am Chem Soc 2016; 138:10822-5. [DOI: 10.1021/jacs.6b07240] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Luping Liu
- Max-Planck-Institut für Kohlenforschung, Kaiser
Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Philip S. J. Kaib
- Max-Planck-Institut für Kohlenforschung, Kaiser
Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Aurélien Tap
- Max-Planck-Institut für Kohlenforschung, Kaiser
Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser
Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Ponra S, Majumdar KC. Brønsted acid-promoted synthesis of common heterocycles and related bio-active and functional molecules. RSC Adv 2016. [DOI: 10.1039/c5ra27069c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
5
|
Tsui GC, Liu L, List B. Die organokatalytische asymmetrische Prins-Cyclisierung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500219] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Tsui GC, Liu L, List B. The Organocatalytic Asymmetric Prins Cyclization. Angew Chem Int Ed Engl 2015; 54:7703-6. [DOI: 10.1002/anie.201500219] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/25/2015] [Indexed: 01/25/2023]
|
7
|
Sarmah B, Baishya G, Baruah RK. Prins-Arylthiolation Reaction on Terpenoids: Diastereoselective Synthesis of 4-Arylthiooctahydro-2H-chromenes. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Zheng K, Liu X, Qin S, Xie M, Lin L, Hu C, Feng X. Completely OH-Selective FeCl3-Catalyzed Prins Cyclization: Highly Stereoselective Synthesis of 4-OH-Tetrahydropyrans. J Am Chem Soc 2012; 134:17564-73. [DOI: 10.1021/ja3062002] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ke Zheng
- Key Laboratory of Green Chemistry
& Technology,
Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic
of China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry
& Technology,
Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic
of China
| | - Song Qin
- Key Laboratory of Green Chemistry
& Technology,
Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic
of China
| | - Mingsheng Xie
- Key Laboratory of Green Chemistry
& Technology,
Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic
of China
| | - Lili Lin
- Key Laboratory of Green Chemistry
& Technology,
Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic
of China
| | - Changwei Hu
- Key Laboratory of Green Chemistry
& Technology,
Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic
of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry
& Technology,
Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic
of China
| |
Collapse
|
9
|
Subba Reddy B, Dey SK, Yadav J, Sridhar B. A novel intramolecular Ugi 3CC for the synthesis of N-alkyl-3-oxo-2-aryl-1,2,3,4-tetrahydropyrazino[1,2-a]indole-1-carboxamides. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Chio FK, Warne J, Gough D, Penny M, Green (née Martinović) S, Coles SJ, Hursthouse MB, Jones P, Hassall L, McGuire TM, Dobbs AP. On the choice of Lewis acids for the Prins reaction; two total syntheses of (±)-Civet. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.05.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Yadav J, Subba Reddy B, Anusha B, Subba Reddy U, Bhadra Reddy V. HBF4·OEt2 as a versatile reagent for the Hosomi–Sakurai allylation and Prins cyclization: one-pot synthesis of symmetrical 4-fluorotetrahydropyrans. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.03.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Spivey AC, Laraia L, Bayly AR, Rzepa HS, White AJP. Stereoselective Synthesis of cis- and trans-2,3-Disubstituted Tetrahydrofurans via Oxonium−Prins Cyclization: Access to the Cordigol Ring System. Org Lett 2010; 12:900-3. [DOI: 10.1021/ol9024259] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alan C. Spivey
- Department of Chemistry, Imperial College, London SW7
2AY, U.K
| | - Luca Laraia
- Department of Chemistry, Imperial College, London SW7
2AY, U.K
| | - Andrew R. Bayly
- Department of Chemistry, Imperial College, London SW7
2AY, U.K
| | - Henry S. Rzepa
- Department of Chemistry, Imperial College, London SW7
2AY, U.K
| | | |
Collapse
|
13
|
Yadav J, Subba Reddy B, Jayasudhan Reddy Y, Phaneendra Reddy B, Adinarayana Reddy P. A novel Prins-alkynylation reaction for the synthesis of 4-phenacyl tetrahydropyrans. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2009.12.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Synthesis of tetrahydropyrans and related heterocycles via prins cyclization; extension to aza-prins cyclization. Tetrahedron 2010. [DOI: 10.1016/j.tet.2009.10.069] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Asymmetric synthesis of Goniothalesdiol A from (R)-2,3-O-cyclohexylidine glyceraldehyde. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|