1
|
Kim Y, Sengupta S, Sim T. Natural and Synthetic Lactones Possessing Antitumor Activities. Int J Mol Sci 2021; 22:ijms22031052. [PMID: 33494352 PMCID: PMC7865919 DOI: 10.3390/ijms22031052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer is one of the leading causes of death globally, accounting for an estimated 8 million deaths each year. As a result, there have been urgent unmet medical needs to discover novel oncology drugs. Natural and synthetic lactones have a broad spectrum of biological uses including anti-tumor, anti-helminthic, anti-microbial, and anti-inflammatory activities. Particularly, several natural and synthetic lactones have emerged as anti-cancer agents over the past decades. In this review, we address natural and synthetic lactones focusing on their anti-tumor activities and synthetic routes. Moreover, we aim to highlight our journey towards chemical modification and biological evaluation of a resorcylic acid lactone, L-783277 (4). We anticipate that utilization of the natural and synthetic lactones as novel scaffolds would benefit the process of oncology drug discovery campaigns based on natural products.
Collapse
Affiliation(s)
- Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Sandip Sengupta
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2228-0797
| |
Collapse
|
2
|
Chakraborty J, Ghosh A, Nanda S. Asymmetric total syntheses of naturally occurring α,β-enone-containing RALs, L-783290 and L-783277 through intramolecular base-mediated macrolactonization reaction. Org Biomol Chem 2020; 18:2331-2345. [PMID: 32162636 DOI: 10.1039/d0ob00237b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Asymmetric total synthesis of two naturally occurring α,β-enone containing RALs, L-783290 and L-783277 is described in this article. An E-selective Horner-Wadsworth-Emmons (HWE) olefination was used as a key reaction to construct the C7'-C8' olefinic unsaturation in L-783290. An enantiopure alkyne addition to the aldehyde followed by Z-selective partial reduction was employed to construct the C7'-C8' olefinic unsaturation in L-783277. Biomimetic lactonization reaction was used to construct the macrolactone core in both the target molecules.
Collapse
Affiliation(s)
- Joy Chakraborty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Ankan Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India. and Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | - Samik Nanda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
3
|
Lan P, Ye S, Banwell MG. The Application of Dioxygenase-Based Chemoenzymatic Processes to the Total Synthesis of Natural Products. Chem Asian J 2020; 14:4001-4012. [PMID: 31609526 DOI: 10.1002/asia.201900988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/18/2019] [Indexed: 12/14/2022]
Abstract
This Minireview describes the exploitation of certain enzymatically derived, readily accessible, and enantiomerically pure cis-1,2-dihydrocatechols as starting materials in the chemical synthesis of a range of biologically active natural products, most notably sesquiterpenoids and alkaloids.
Collapse
Affiliation(s)
- Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, China
| | - Sebastian Ye
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT, 2601, Australia
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, China.,Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
4
|
Liang X, Zhao Y, Si X, Xu M, Tan J, Zhang Z, Zheng C, Zheng C, Cai Q. Enantioselective Synthesis of Arene
cis
‐Dihydrodiols from 2‐Pyrones. Angew Chem Int Ed Engl 2019; 58:14562-14567. [DOI: 10.1002/anie.201908284] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Xiao‐Wei Liang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Yunlong Zhao
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Xu‐Ge Si
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Meng‐Meng Xu
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Jia‐Hao Tan
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Zhi‐Mao Zhang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Cheng‐Gong Zheng
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Rd. Shanghai 200032 China
| | - Quan Cai
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| |
Collapse
|
5
|
Liang X, Zhao Y, Si X, Xu M, Tan J, Zhang Z, Zheng C, Zheng C, Cai Q. Enantioselective Synthesis of Arene
cis
‐Dihydrodiols from 2‐Pyrones. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiao‐Wei Liang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Yunlong Zhao
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Xu‐Ge Si
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Meng‐Meng Xu
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Jia‐Hao Tan
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Zhi‐Mao Zhang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Cheng‐Gong Zheng
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Rd. Shanghai 200032 China
| | - Quan Cai
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| |
Collapse
|
6
|
Hudlicky T. Benefits of Unconventional Methods in the Total Synthesis of Natural Products. ACS OMEGA 2018; 3:17326-17340. [PMID: 30613812 PMCID: PMC6312638 DOI: 10.1021/acsomega.8b02994] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
This article provides a survey of four "unconventional" methods employed in the synthesis of natural products in the Hudlicky group. The utility of flash vacuum pyrolysis is highlighted by examples of many natural products attained via vinylcyclopropane-cyclopentene rearrangement and its heterocyclic variants. Preparative organic electrochemistry was used in oxidations and reductions with levels of selectivity unattainable by conventional methods. Yeast reduction of ketoesters was featured in the total synthesis of pyrrolizidine alkaloids. Finally, the use of toluene dioxygenase-mediated dihydroxylations in enantioselective synthesis of natural products concludes this presentation. Recently, synthesized targets in the period 2010-2019 are listed in the accompanying table. The results of research from the Hudlicky group are placed in appropriate context with the work of others, and a detailed guide to the current literature is provided.
Collapse
|
7
|
Jana N, Nanda S. Resorcylic acid lactones (RALs) and their structural congeners: recent advances in their biosynthesis, chemical synthesis and biology. NEW J CHEM 2018. [DOI: 10.1039/c8nj02534g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resorcylic acid lactones (RALs) are naturally occurring 14-membered macrolactones that constitute a class of polyketides derived from fungal metabolites and that possess significant and promising biological activity.
Collapse
Affiliation(s)
- Nandan Jana
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Samik Nanda
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
8
|
Taher ES, Banwell MG, Buckler JN, Yan Q, Lan P. The Exploitation of Enzymatically-Derivedcis-1,2-Dihydrocatechols and Related Compounds in the Synthesis of Biologically Active Natural Products. CHEM REC 2017; 18:239-264. [DOI: 10.1002/tcr.201700064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Ehab S. Taher
- Research School of Chemistry; Institute of Advanced Studies; The Australian National University; Canberra ACT 2601 Australia
| | - Martin G. Banwell
- Research School of Chemistry; Institute of Advanced Studies; The Australian National University; Canberra ACT 2601 Australia
| | - Joshua N. Buckler
- Research School of Chemistry; Institute of Advanced Studies; The Australian National University; Canberra ACT 2601 Australia
| | - Qiao Yan
- Research School of Chemistry; Institute of Advanced Studies; The Australian National University; Canberra ACT 2601 Australia
| | - Ping Lan
- Department of Food Science and Engineering; College of Science and Engineering; Jinan University; Guangzhou 510632 People's Republic of China
| |
Collapse
|
9
|
Banwell MG, Ma X, Bolte B, Zhang Y, Dlugosch M. Chemical syntheses of the cochliomycins and certain related resorcylic acid lactones. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Kirchhofer ND, Rengert ZD, Dahlquist FW, Nguyen TQ, Bazan GC. A Ferrocene-Based Conjugated Oligoelectrolyte Catalyzes Bacterial Electrode Respiration. Chem 2017. [DOI: 10.1016/j.chempr.2017.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Ma X, Bolte B, Banwell MG, Willis AC. Total Syntheses of the Resorcylic Acid Lactones Paecilomycin F and Cochliomycin C Using an Intramolecular Loh-Type α-Allylation Reaction for Macrolide Formation. Org Lett 2016; 18:4226-9. [PMID: 27541929 DOI: 10.1021/acs.orglett.6b01963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Subjection of the resorcylic ester 16 to a Nozaki-Hiyama-Kishi reaction afforded the 12-membered lactone 17, while treatment of it under the Loh-type α-allylation conditions using indium metal gave the isomeric, 14-membered macrolide 18. Compound 18 was readily elaborated to the resorcylic acid lactone type natural products paecilomycin F and cochliomycin C.
Collapse
Affiliation(s)
- Xiang Ma
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University , Canberra, ACT 2601, Australia
| | - Benoit Bolte
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University , Canberra, ACT 2601, Australia
| | - Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University , Canberra, ACT 2601, Australia
| | - Anthony C Willis
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University , Canberra, ACT 2601, Australia
| |
Collapse
|
12
|
Zhang Y, Dlugosch M, Jübermann M, Banwell MG, Ward JS. Total syntheses of the resorcylic acid lactone neocosmosin A and its enantiomer. J Org Chem 2015; 80:4828-33. [PMID: 25831481 DOI: 10.1021/acs.joc.5b00590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A total synthesis of the structure, 1, assigned to the recently reported resorcylic acid lactone (RAL) neocosmosin A has been established. Olefin-cross metathesis, ring-closing metathesis, palladium-catalyzed Meinwald rearrangement, and Mitsunobu esterification reactions were used as key steps. A late-stage and simple modification to the reaction sequence also provided compound ent-1 that, in fact, represents the true structure of the natural product.
Collapse
Affiliation(s)
- Yiwen Zhang
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Michael Dlugosch
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Martin Jübermann
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Jas S Ward
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
13
|
Bolte B, Basutto JA, Bryan CS, Garson MJ, Banwell MG, Ward JS. Modular total syntheses of the marine-derived resorcylic Acid lactones cochliomycins a and B using a late-stage nozaki-hiyama-kishi macrocyclization reaction. J Org Chem 2014; 80:460-70. [PMID: 25405580 DOI: 10.1021/jo5024602] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The natural products cochliomycin A (1) and cochliomycin B (2), two resorcylic acid lactones obtained from marine sources, have been prepared in a concise and stereocontrolled manner from the readily accessible building blocks 4-6. Olefin cross-metathesis, trans-esterification and Nozaki-Hiyama-Kishi (NHK) macrocyclization reactions were employed in the key steps. Hydrolysis of the immediate precursor to cochliomycin B affords the resorcylic acid lactone zeaenol (24).
Collapse
Affiliation(s)
- Benoit Bolte
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| | - Jose A Basutto
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| | - Christopher S Bryan
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| | - Mary J Garson
- ‡School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Martin G Banwell
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| | - Jas S Ward
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
14
|
Reddy AS, Kishore C, Reddy BS. A concise and stereoselective total synthesis of L-783,290. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.08.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Ting SZ, Baird LJ, Dunn E, Hanna R, Leahy D, Chan A, Miller JH, Teesdale-Spittle PH, Harvey JE. Synthesis of diastereomeric, deoxy and ring-expanded sulfone analogues of aigialomycin D. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Ali Khan M, Mahon MF, Lowe JP, Stewart AJW, Lewis SE. Valuable New Cyclohexadiene Building Blocks from Cationic η5-Iron-Carbonyl Complexes Derived from a Microbial Arene Oxidation Product. Chemistry 2012; 18:13480-93. [DOI: 10.1002/chem.201202411] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Indexed: 11/08/2022]
|
17
|
Herndon JW. The chemistry of the carbon–transition metal double and triple bond: Annual survey covering the year 2010. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Boyd DR, Bell M, Dunne KS, Kelly B, Stevenson PJ, Malone JF, Allen CCR. Chemoenzymatic synthesis of a mixed phosphine–phosphine oxide catalyst and its application to asymmetric allylation of aldehydes and hydrogenation of alkenes. Org Biomol Chem 2012; 10:1388-95. [DOI: 10.1039/c1ob06599h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Boyd DR, Sharma ND, Kaik M, Bell M, Berberian MV, McIntyre PBA, Kelly B, Hardacre C, Stevenson PJ, Allen CCR. Cycloalkenyl Halide Substitution Reactions of Enantiopure Arene cis-Tetrahydrodiols with Boron, Nitrogen and Phosphorus Nucleophiles. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Bon DJY, Banwell MG, Willis AC. A chemoenzymatic total synthesis of the hirsutene-type sesquiterpene (+)-connatusin B from toluene. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.07.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
G. Banwell M, Lin A, C. Willis A. An Enantioselective Synthesis of the Resorcylic Acid Lactone L-783,277 via Addition of an Acetylide Anion to a Tethered Weinreb Amide. HETEROCYCLES 2010. [DOI: 10.3987/com-10-s(e)67] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|