1
|
Ohashi E, Karanjit S, Nakayama A, Takeuchi K, Emam SE, Ando H, Ishida T, Namba K. Efficient construction of the hexacyclic ring core of palau'amine: the p K a concept for proceeding with unfavorable equilibrium reactions. Chem Sci 2021; 12:12201-12210. [PMID: 34667586 PMCID: PMC8457368 DOI: 10.1039/d1sc03260g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
Palau'amine has received a great deal of attention as an attractive synthetic target due to its intriguing molecular architecture and significant immunosuppressive activity, and we achieved its total synthesis in 2015. However, the synthesized palau'amine has not been readily applicable to the mechanistic study of immunosuppressive activity, because it requires 45 longest linear steps from a commercially available compound. Here, we report the short-step construction of the ABCDEF hexacyclic ring core of palau'amine. The construction of the CDE tricyclic ring core in a single step is achieved by our pKa concept for proceeding with unfavorable equilibrium reactions, and a palau'amine analog without the aminomethyl and chloride groups is synthesized in 20 longest linear steps from the same starting material. The palau'amine analog is confirmed to retain the immunosuppressive activity. The present synthetic approach for a palau'amine analog has the potential for use in the development of palau'amine probes for mechanistic elucidation. A palau'amine analog (2) was synthesized from 2-cyclopentenone in 20 steps. The construction of the CDE tricyclic ring core in a single step is achieved by our pKa concept for proceeding with the unfavorable equilibrium reactions.![]()
Collapse
Affiliation(s)
- Eisaku Ohashi
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Sangita Karanjit
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan .,Research Cluster on "Innovative Chemical Sensing", Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Atsushi Nakayama
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan .,Research Cluster on "Innovative Chemical Sensing", Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Kohei Takeuchi
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Sherif E Emam
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Hidenori Ando
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Tatsuhiro Ishida
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Kosuke Namba
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan .,Research Cluster on "Innovative Chemical Sensing", Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| |
Collapse
|
2
|
Guo X, Li YY, Wang SH, Zhang FM, Li BS, Tu YQ, Zhang XM. Construction of the tetracyclic core of the Lycopodium alkaloid annotinolide C. Org Chem Front 2021. [DOI: 10.1039/d1qo00087j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A concise approach to the tetracyclic core of annotinolide C has been developed which contains two key reactions epoxidation/1,2-migration to construct an aza [6.5] spiro ring (A and B) and semireduction/cyclization to construct lactone ring D.
Collapse
Affiliation(s)
- Xiang Guo
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Yong-Yao Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Shuang-Hu Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Bao-Sheng Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
- School of Chemistry & Chemical Engineering
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
3
|
Teimouri MB, Heydari M, Mohammadi K. Substrate-controlled selectivity switch in a three-component reaction: sequential synthesis of spiro-oxazolidinedione-cyclopentenones and hydroxy enaminobarbiturates in water. RSC Adv 2020; 10:13601-13610. [PMID: 35492975 PMCID: PMC9051567 DOI: 10.1039/d0ra01699c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/25/2020] [Indexed: 11/21/2022] Open
Abstract
An efficient eco-friendly catalyst-free three-component domino multicyclization for the synthesis of new spirobicyclic oxazolidinedione containing cyclopentenone moieties has been established by mixing amines, β-dicarbonyl compounds and N,N'-dimethylalloxan in water at room temperature. This domino process involves multiple reactions such as enamination/aldol-like reaction/Stork enamine annulation/intramolecular cyclization under mild conditions.
Collapse
Affiliation(s)
| | - Mahdi Heydari
- Faculty of Chemistry, Kharazmi University Mofateh Ave. Tehran Iran
| | - Kazem Mohammadi
- Faculty of Chemistry, Kharazmi University Mofateh Ave. Tehran Iran
| |
Collapse
|
4
|
Yavari I, Naeimabadi M, Halvagar MR. A diastereoselective synthesis of functionalized bis-spirorhodanine-linked cyclopentanes via C(sp 3 )–H activation. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Cannon JS. A Nitrone Dipolar Cycloaddition Strategy toward an Enantioselective Synthesis of Massadine. Org Lett 2018; 20:3883-3887. [PMID: 29897770 DOI: 10.1021/acs.orglett.8b01464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An enantioselective route to the C,D-bicycle of massadine is reported. Enantiopure intermediates were generated by a single stereoselective reduction using the Corey-Bakshi-Shibata reagent. This initial stereoinduction was translated into the five contiguous stereocenters of the massadine D-ring by a synthetic route that features a diastereoselective and stereospecific Ireland-Claisen rearrangement of a trianionic enolate followed by a diastereoselective nitrone dipolar cycloaddition of a highly electron-poor oxime.
Collapse
Affiliation(s)
- Jeffrey S Cannon
- Department of Chemistry , University of California , 1102 Natural Sciences II, Irvine , California 92697-2025 , United States
| |
Collapse
|
6
|
Malinowski M, Hensienne R, Kern N, Tardieu D, Bodlenner A, Hazelard D, Compain P. Stereocontrolled synthesis of polyhydroxylated bicyclic azetidines as a new class of iminosugars. Org Biomol Chem 2018; 16:4688-4700. [PMID: 29892731 DOI: 10.1039/c8ob01065j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report herein the development of a stereodivergent route towards polyhydroxylated bicyclic azetidine scaffolds, namely 6-azabicyclo[3.2.0]heptane derivatives. The strategy hinges on a common bicyclic β-lactam precursor, which is forged by way of a rare example of a cationic Dieckmann-type reaction, followed by IBX-mediated desaturation. Substrate-controlled diastereoselective oxidations then allow the divergent preparation of novel iminosugar mimics.
Collapse
Affiliation(s)
- Maciej Malinowski
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Raphaël Hensienne
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Nicolas Kern
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Damien Tardieu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Anne Bodlenner
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| |
Collapse
|
7
|
Imaoka T, Iwata M, Nagasawa K. Synthesis of a Quaternary N
,N′
-Aminal-Containing A-E Ring System of Palau′amine via an Enamide-Type Overman Rearrangement Reaction. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takuya Imaoka
- Graduate School of Technology; Tokyo University of Agriculture and Technology; 2-24-16, Naka-cho 184-8588, Tokyo Koganei Japan
| | - Makoto Iwata
- Graduate School of Technology; Tokyo University of Agriculture and Technology; 2-24-16, Naka-cho 184-8588, Tokyo Koganei Japan
| | - Kazuo Nagasawa
- Graduate School of Technology; Tokyo University of Agriculture and Technology; 2-24-16, Naka-cho 184-8588, Tokyo Koganei Japan
| |
Collapse
|
8
|
Synthesis of trans-4,5-diaminocyclopent-2-enones from furfural catalyzed by Er(III) immobilized on silica. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Ma Z, Wang X, Ma Y, Chen C. Asymmetric Synthesis of Axinellamines A and B. Angew Chem Int Ed Engl 2016; 55:4763-6. [PMID: 27037993 PMCID: PMC4836294 DOI: 10.1002/anie.201600007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/05/2016] [Indexed: 11/10/2022]
Abstract
Axinellamines A and B are broad-spectrum antibacterial pyrrole-imidazole alkaloids that have a complex polycyclic skeleton. A new asymmetric synthesis of these marine sponge metabolites is described herein, featuring an oxidative rearrangement and an anchimeric chlorination reaction.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Xiao Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Department of Chemistry and Biochemistry, The University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yuyong Ma
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Department of Chemistry and Biochemistry, The University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Chuo Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
10
|
Affiliation(s)
- Zhiqiang Ma
- Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390 USA
| | - Xiao Wang
- Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390 USA
- Department of Chemistry and Biochemistry The University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Yuyong Ma
- Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390 USA
- Department of Chemistry and Biochemistry The University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Chuo Chen
- Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390 USA
| |
Collapse
|
11
|
Singh MS, Chowdhury S, Koley S. Progress in 1,3-dipolar cycloadditions in the recent decade: an update to strategic development towards the arsenal of organic synthesis. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.02.031] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Namba K, Takeuchi K, Kaihara Y, Oda M, Nakayama A, Nakayama A, Yoshida M, Tanino K. Total synthesis of palau'amine. Nat Commun 2015; 6:8731. [PMID: 26530707 PMCID: PMC4667646 DOI: 10.1038/ncomms9731] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/25/2015] [Indexed: 11/09/2022] Open
Abstract
Palau'amine has received a great deal of attention in the past two decades as an attractive synthetic target by virtue of its intriguing molecular architecture and significant immunosuppressive activity. Here we report the total synthesis of palau'amine characterized by the construction of an ABDE tetracyclic ring core including a trans-bicylo[3.3.0]octane skeleton at a middle stage of total synthesis. The ABDE tetracyclic ring core is constructed by a cascade reaction of a cleavage of the N-N bond, including simultaneous formation of imine, the addition of amide anion to the resulting imine (D-ring formation) and the condensation of pyrrole with methyl ester (B-ring formation) in a single step. The synthetic palau'amine is confirmed to exhibit excellent immunosuppressive activity. The present synthetic route has the potential to help elucidate a pharmacophore as well as the mechanistic details of immunosuppressive activity.
Collapse
Affiliation(s)
- Kosuke Namba
- Department of Pharmaceutical Science, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Kohei Takeuchi
- Department of Pharmaceutical Science, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Yukari Kaihara
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Masataka Oda
- Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8514, Japan
| | - Akira Nakayama
- Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
| | - Atsushi Nakayama
- Department of Pharmaceutical Science, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Masahiro Yoshida
- Department of Pharmaceutical Science, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
13
|
Abstract
The carbocyclic core of massadine has been synthesized relying on a stereoselective formal [3 + 2] cycloaddition of lithiumtrimethylsilyldiazomethane with α,β-unsaturated esters to form a Δ(2)-pyrazoline moiety followed by facile N-N bond cleavage. A unique feature of the current approach is the direct installation of the tertiary α-amino center and a β-cyano group in a cis arrangement on the resulting cyclopentane framework via a previously developed formal aminocyanation protocol.
Collapse
Affiliation(s)
- Chunrui Sun
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Hyunjin Lee
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Daesung Lee
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
14
|
Abstract
Naturally occurring guanidine derivatives frequently display medicinally useful properties. Among them, the higher order pyrrole-imidazole alkaloids, the dragmacidins, the crambescidins/batzelladines, and the saxitoxins/tetradotoxins have stimulated the development of many new synthetic methods over the past decades. We provide here an overview of the syntheses of these cyclic guanidine-containing natural products.
Collapse
Affiliation(s)
- Yuyong Ma
- Division of Chemistry, Department of Biochemistry, U T Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Saptarshi De
- Division of Chemistry, Department of Biochemistry, U T Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Chuo Chen
- Division of Chemistry, Department of Biochemistry, U T Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| |
Collapse
|
15
|
Wang X, Ma Z, Wang X, De S, Ma Y, Chen C. Dimeric pyrrole-imidazole alkaloids: synthetic approaches and biosynthetic hypotheses. Chem Commun (Camb) 2014; 50:8628-39. [PMID: 24828265 PMCID: PMC4096073 DOI: 10.1039/c4cc02290d] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The pyrrole-imidazole alkaloids are a group of structurally unique and biologically interesting marine sponge metabolites. Among them, the cyclic dimers have caught synthetic chemists' attention particularly. Numerous synthetic strategies have been developed and various biosynthetic hypotheses have been proposed for these fascinating natural products. We discuss herein the synthetic approaches and the biosynthetic insights obtained from these studies.
Collapse
Affiliation(s)
- Xiao Wang
- Division of Chemistry, Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Aron ZD, Ito T, May TL, Overman LE, Wang J. Enantioselective synthesis of angularly substituted 1-azabicylic rings: coupled dynamic kinetic epimerization and chirality transfer. J Org Chem 2013; 78:9929-48. [PMID: 24090405 DOI: 10.1021/jo4018099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new strategy for enantioselective synthesis of azacyclic molecules in which dynamic kinetic equilibration of diastereomeric iminium ions precedes a stereochemistry-determining sigmatropic rearrangement is reported. The method is illustrated by the synthesis, in high enantiomeric purity (generally 95-99% ee), of a variety of 1-azabicyclic molecules containing angular allyl or 3-substituted 2-propenyl side chains adjacent to nitrogen and up to three stereogenic centers. In these products, the size of the carbocyclic ring is varied widely (5-12 membered); however, useful yields are obtained in forming 1-azabicyclic products containing only fused pyrrolidine and piperidine rings. Chirality transfer from substituents at carbons 1 and 2 of the 3-butenylamine fragment of the starting material is investigated, with methyl and phenyl substituents at the allylic position shown to provide exquisite stereocontrol (generally 98-99% chirality transfer). An attractive feature of the method is the ability to carry out the key transformation in the absence of solvent. Illustrated also is the high yielding conversion of four such products to a new family of bicyclic β-amino acids of high enantiomeric purity.
Collapse
Affiliation(s)
- Zachary D Aron
- Department of Chemistry, University of California, Irvine , 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Nunes JPM, Afonso CAM, Caddick S. Synthesis of 2,4-bifunctionalised cyclopentenones from 2-furaldehyde. RSC Adv 2013. [DOI: 10.1039/c3ra42663g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Wang X, Wang X, Tan X, Lu J, Cormier KW, Ma Z, Chen C. A biomimetic route for construction of the [4+2] and [3+2] core skeletons of dimeric pyrrole-imidazole alkaloids and asymmetric synthesis of ageliferins. J Am Chem Soc 2012; 134:18834-42. [PMID: 23072663 DOI: 10.1021/ja309172t] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pyrrole-imidazole alkaloids have fascinated chemists for decades because of their unique structures. The high nitrogen and halogen contents and the densely functionalized skeletons make their laboratory synthesis challenging. We describe herein an oxidative method for accessing the core skeletons of two classes of pyrrole-imidazole dimers. This synthetic strategy was inspired by the putative biosynthesis pathways and its development was facilitated by computational studies. Using this method, we have successfully prepared ageliferin, bromoageliferin, and dibromoageliferin in their natural enantiomeric form.
Collapse
Affiliation(s)
- Xiao Wang
- Division of Chemistry, Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, 75390-9038, United States
| | | | | | | | | | | | | |
Collapse
|
20
|
Fukahori Y, Takayama Y, Imaoka T, Iwamoto O, Nagasawa K. Intramolecular 1,3-Dipolar Cycloaddition-Mediated Stereoselective Synthesis of Disubstituted Cyclopentane: A Simple Model for the Cyclopentane Ring System of Polycyclic Oroidine Alkaloids. Chem Asian J 2012; 8:244-50. [DOI: 10.1002/asia.201200820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Indexed: 11/08/2022]
|
21
|
Jiang B, Wang J, Huang ZG. Studies toward the Total Synthesis of Nagelamide K. Org Lett 2012; 14:2070-3. [DOI: 10.1021/ol3005886] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Biao Jiang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China, and Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
| | - Jue Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China, and Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
| | - Zuo-gang Huang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China, and Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
| |
Collapse
|
22
|
Seiple IB, Su S, Young IS, Nakamura A, Yamaguchi J, Jørgensen L, Rodriguez RA, O’Malley DP, Gaich T, Köck M, Baran PS. Enantioselective total syntheses of (-)-palau'amine, (-)-axinellamines, and (-)-massadines. J Am Chem Soc 2011; 133:14710-26. [PMID: 21861522 PMCID: PMC3173569 DOI: 10.1021/ja2047232] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dimeric pyrrole-imidazole alkaloids represent a rich and topologically unique class of marine natural products. This full account will follow the progression of efforts that culminated in the enantioselective total syntheses of the most structurally ornate members of this family: the axinellamines, the massadines, and palau'amine. A bio-inspired approach capitalizing on the pseudo-symmetry of the members of this class is recounted, delivering a deschloro derivative of the natural product core. Next, the enantioselective synthesis of the chlorocyclopentane core featuring a scalable, catalytic, enantioselective Diels-Alder reaction of a 1-siloxydiene is outlined in detail. Finally, the successful divergent conversion of this core to each of the aforementioned natural products, and the ensuing methodological developments, are described.
Collapse
Affiliation(s)
- Ian B. Seiple
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | | | | | - Akifumi Nakamura
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Junichiro Yamaguchi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Lars Jørgensen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Rodrigo A. Rodriguez
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Daniel P. O’Malley
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Tanja Gaich
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Matthias Köck
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| |
Collapse
|
23
|
Abstract
We describe herein an asymmetric synthesis of ageliferin. A Mn(III)-mediated oxidative radical cyclization reaction was used as the key step to construct the core skeleton of this pyrrole-imidazole dimer. This approach resembles the biogenic [4 + 2] dimerization in an intramolecular fashion.
Collapse
Affiliation(s)
- Xiao Wang
- Division of Chemistry, Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | | | | | | | | |
Collapse
|
24
|
Su S, Rodriguez RA, Baran PS. Scalable, stereocontrolled total syntheses of (±)-axinellamines A and B. J Am Chem Soc 2011; 133:13922-5. [PMID: 21846138 DOI: 10.1021/ja206191g] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of a simple, efficient, scalable, and stereocontrolled synthesis of a common intermediate en route to the axinellamines, massadines, and palau'amine is reported. This completely new route was utilized to prepare the axinellamines on a gram scale. In a more general sense, three distinct and enabling methodological advances were made during these studies: (1) an ethylene glycol-assisted Pauson-Khand cycloaddition reaction, (2) a Zn/In-mediated Barbier-type reaction, and (3) a TfNH(2)-assisted chlorination-spirocyclization.
Collapse
Affiliation(s)
- Shun Su
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | |
Collapse
|
25
|
Al-Mourabit A, Zancanella MA, Tilvi S, Romo D. Biosynthesis, asymmetric synthesis, and pharmacology, including cellular targets, of the pyrrole-2-aminoimidazole marine alkaloids. Nat Prod Rep 2011; 28:1229-60. [PMID: 21556392 PMCID: PMC5596510 DOI: 10.1039/c0np00013b] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The pyrrole-2-aminoimidazole (P-2-AI) alkaloids are a growing family of marine alkaloids, now numbering well over 150 members, with high topographical and biological information content. Their intriguing structural complexity, rich and compact stereochemical content, high N to C ratio (~1 : 2), and increasingly studied biological activities are attracting a growing number of researchers from numerous disciplines world-wide. This review surveys advances in this area with a focus on the structural diversity, biosynthetic hypotheses with increasing, but still rare, verifying experimental studies, asymmetric syntheses, and biological studies, including cellular target receptor isolation studies, of this stimulating and exciting alkaloid family.
Collapse
Affiliation(s)
- Ali Al-Mourabit
- Centre de Recherche de Gif-sur-Yvette, Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | - Supriya Tilvi
- Bio-organic Chemistry laboratory, National Institute of Oceanography, Dona Paula, Goa, India, 403 004
| | - Daniel Romo
- Department of Chemistry, Texas A&M Universtiy College Station, TX 77842-3012
| |
Collapse
|
26
|
Williams RM. Natural products synthesis: enabling tools to penetrate Nature's secrets of biogenesis and biomechanism. J Org Chem 2011; 76:4221-59. [PMID: 21438619 PMCID: PMC3174107 DOI: 10.1021/jo2003693] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Selected examples from our laboratory of how synthetic technology platforms developed for the total synthesis of several disparate families of natural products was harnessed to penetrate biomechanistic and/or biosynthetic queries is discussed. Unexpected discoveries of biomechanistic reactivity and/or penetrating the biogenesis of naturally occurring substances were made possible through access to substances available only through chemical synthesis. Hypothesis-driven total synthesis programs are emerging as very useful conceptual templates for penetrating and exploiting the inherent reactivity of biologically active natural substances. In many instances, new enabling synthetic technologies were required to be developed. The examples demonstrate the often untapped richness of complex molecule synthesis to provide powerful tools to understand, manipulate and exploit Nature's vast and creative palette of secondary metabolites.
Collapse
Affiliation(s)
- Robert M Williams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.
| |
Collapse
|
27
|
Bhandari MR, Yousufuddin M, Lovely CJ. Diversity-oriented approach to pyrrole-imidazole alkaloid frameworks. Org Lett 2011; 13:1382-5. [PMID: 21338082 DOI: 10.1021/ol200067e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An exploration of imidazolylpropargyl amides as linchpin synthons for the construction of a diverse array of heterocyclic frameworks, many of which are related to those found in the oroidin derived alkaloids, is described. One such intermediate has been used in a formal total synthesis of cyclooroidin.
Collapse
Affiliation(s)
- Manojkumar R Bhandari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | | | | |
Collapse
|
28
|
He Y, Krishnamoorthy P, Lima HM, Chen Y, Wu H, Sivappa R, Dias HVR, Lovely CJ. Intramolecular Diels–Alder chemistry of 4-vinylimidazoles. Org Biomol Chem 2011; 9:2685-701. [DOI: 10.1039/c0ob00657b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|