1
|
Bashir M, Mantoo IA, Yousuf I. Peroxidase-like oxidative activity of cobalt-based 1D coordination polymer; experimental and theoretical investigations. J Mol Model 2023; 29:221. [PMID: 37400745 DOI: 10.1007/s00894-023-05639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
CONTEXT The present work describes the synthesis, structural characterization, and catalytic activity of a Co(II)-based one-dimensional coordination polymer (CP1). To validate the chemotherapeutic potential of CP1, in vitro DNA binding assessment was carried out by employing multispectroscopic techniques. Moreover, the catalytic activity of CP1 was also ascertained during the oxidative conversion of o-phenylenediamine (OPD) to diaminophenazine (DAP) under aerobic conditions. METHODS The molecular structure of CP1 was solved with the olex2.solve structure solution program using charge flipping and refined with the olex2.refine refinement package by using Gauss-Newton minimization. The DFT studies were performed by utilizing ORCA Program Version 4.1.1 to calculate the electronic and chemical properties of CP1 by calculating the HOMO-LUMO energy gap. All calculations were carried out at B3LYP hybrid functional using def2-TZVP as the basis set. Contour plots of various FMOs were visualized by using Avogadro software. Hirshfeld surface analysis was carried out by Crystal explorer Program 17.5.27 to examine the various non-covalent interactions which are crucial for the stability of crystal lattice. In addition, molecular docking studies of CP1 with DNA were performed by using AutoDock Vina software and AutoDock tools (version 1.5.6). Discovery studio 3.5 Client 2020 was used for visualization of the docked pose and binding interactions of CP1 with ct-DNA.
Collapse
Affiliation(s)
- Masrat Bashir
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Imtiyaz Ahmad Mantoo
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Imtiyaz Yousuf
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
2
|
Hahn V. Potential of the enzyme laccase for the synthesis and derivatization of antimicrobial compounds. World J Microbiol Biotechnol 2023; 39:107. [PMID: 36854853 PMCID: PMC9974771 DOI: 10.1007/s11274-023-03539-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
Laccases [E.C. 1.10.3.2, benzenediol:dioxygen oxidoreductase] can oxidize phenolic substances, e.g. di- and polyphenols, hydroxylated biaryls, aminophenols or aryldiamines. This large substrate spectrum is the basis for various reaction possibilities, which include depolymerization and polymerization reactions, but also the coupling of different substance classes. To catalyze these reactions, laccases demand only atmospheric oxygen and no depletive cofactors. The utilization of mild and environmentally friendly reaction conditions such as room temperature, atmospheric pressure, and the avoidance of organic solvents makes the laccase-mediated reaction a valuable tool in green chemistry for the synthesis of biologically active compounds such as antimicrobial substances. In particular, the production of novel antibiotics becomes vital due to the evolution of antibiotic resistances amongst bacteria and fungi. Therefore, laccase-mediated homo- and heteromolecular coupling reactions result in derivatized or newly synthesized antibiotics. The coupling or derivatization of biologically active compounds or its basic structures may allow the development of novel pharmaceuticals, as well as the improvement of efficacy or tolerability of an already applied drug. Furthermore, by the laccase-mediated coupling of two different active substances a synergistic effect may be possible. However, the coupling of compounds that have no described efficacy can lead to biologically active substances by means of laccase. The review summarizes laccase-mediated reactions for the synthesis of antimicrobial compounds valuable for medical purposes. In particular, reactions with two different reaction partners were shown in detail. In addition, studies with in vitro and in vivo experimental data for the confirmation of the antibacterial and/or antifungal efficacy of the products, synthesized with laccase, were of special interest. Analyses of the structure-activity relationship confirm the great potential of the novel compounds. These substances may represent not only a value for pharmaceutical and chemical industry, but also for other industries due to a possible functionalization of surfaces such as wood or textiles.
Collapse
Affiliation(s)
- Veronika Hahn
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
- Institute for Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany.
| |
Collapse
|
3
|
Maphupha MM, Vidov A, de Koning CB, Brady D. Laccase-catalysed azide-alkyne cycloadditions: Synthesis of benzothiazole and benzimidazole fused 1,2,3-triazole derivatives by copper containing oxidoreductase enzymes. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2140588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mudzuli M. Maphupha
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Adela Vidov
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles B. de Koning
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Dean Brady
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Nastke A, Gröger H. Biocatalytic Synthesis of Heterocycles. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Enzyme-catalyzed synthesis of bioactive heterocycles. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Enzymes are proteins that functions as biological catalyst. It is now a known fact that enzyme can catalyze many synthetic operations better than the conventional reagents. Not only in the synthesis of natural products, they can also be applied for construction of varieties of unnatural compounds. In this chapter, Pariyar and Ghosh have discussed in brief synthesis of various biologically active heterocyclic compounds using different enzymes as catalysts. Among various enzymes, laccases, trypsin, α-amylase and Bakers’ yeast are few that are easily available and have been extensively explored for various synthetic strategies. This chapter will definitely serve as valuable source of information to the readers in the field of enzyme-catalyzed reactions.
Collapse
|
6
|
Sousa AC, Martins LO, Robalo MP. Laccases: Versatile Biocatalysts for the Synthesis of Heterocyclic Cores. Molecules 2021; 26:3719. [PMID: 34207073 PMCID: PMC8234338 DOI: 10.3390/molecules26123719] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Laccases are multicopper oxidases that have shown a great potential in various biotechnological and green chemistry processes mainly due to their high relative non-specific oxidation of phenols, arylamines and some inorganic metals, and their high redox potentials that can span from 500 to 800 mV vs. SHE. Other advantages of laccases include the use of readily available oxygen as a second substrate, the formation of water as a side-product and no requirement for cofactors. Importantly, addition of low-molecular-weight redox mediators that act as electron shuttles, promoting the oxidation of complex bulky substrates and/or of higher redox potential than the enzymes themselves, can further expand their substrate scope, in the so-called laccase-mediated systems (LMS). Laccase bioprocesses can be designed for efficiency at both acidic and basic conditions since it is known that fungal and bacterial laccases exhibit distinct optimal pH values for the similar phenolic and aromatic amines. This review covers studies on the synthesis of five- and six-membered ring heterocyclic cores, such as benzimidazoles, benzofurans, benzothiazoles, quinazoline and quinazolinone, phenazine, phenoxazine, phenoxazinone and phenothiazine derivatives. The enzymes used and the reaction protocols are briefly outlined, and the mechanistic pathways described.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal;
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - M. Paula Robalo
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal;
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
7
|
Sun K, Li S, Si Y, Huang Q. Advances in laccase-triggered anabolism for biotechnology applications. Crit Rev Biotechnol 2021; 41:969-993. [PMID: 33818232 DOI: 10.1080/07388551.2021.1895053] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This is the first comprehensive overview of laccase-triggered anabolism from fundamental theory to biotechnology applications. Laccase is a typical biological oxidordeuctase that induces the one-electronic transfer of diverse substrates for engendering four phenoxy radicals with concomitant reduction of O2 into 2H2O. In vivo, laccase can participate in anabolic processes to create multifarious functional biopolymers such as fungal pigments, plant lignins, and insect cuticles, using mono/polyphenols and their derivatives as enzymatic substrates, and is thus conducive to biological tissue morphogenesis and global carbon storage. Exhilaratingly, fungal laccase has high redox potential (E° = 500-800 mV) and thermodynamic efficiency, making it a remarkable candidate for utilization as a versatile catalyst in the green and circular economy. This review elaborates the anabolic mechanisms of laccase in initiating the polymerization of natural phenolic compounds and their derivatives in vivo via radical-based self/cross-coupling. Information is also presented on laccase immobilization engineering that expands the practical application ranges of laccase in biotechnology by improving the enzymatic catalytic activity, stability, and reuse rate. Particularly, advances in biotechnology applications in vitro through fungal laccase-triggered macromolecular biosynthesis may provide a key research direction beneficial to the rational design of green chemistry.
Collapse
Affiliation(s)
- Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Shunyao Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, USA
| |
Collapse
|
8
|
Jiménez-Juárez R, Cruz-Chávez W, de Jesús-Ramírez N, Castro-Ramírez GI, Uribe-González I, Martínez-Mejía G, Ruiz-Nicolás R, Aguirre-Alvarado C, Castrejón-Jiménez NS, García-Pérez BE. Synthesis and Antimycobacterial Activity of 2,5-Disubstituted and 1,2,5-Trisubstituted Benzimidazoles. Front Chem 2020; 8:433. [PMID: 32656177 PMCID: PMC7325987 DOI: 10.3389/fchem.2020.00433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
The appearance of drug-resistant strains of Mycobacterium tuberculosis and the dramatic increase in infection rates worldwide evidences the urgency of developing new and effective compounds for treating tuberculosis. Benzimidazoles represent one possible source of new compounds given that antimycobacterial activity has already been documented for some derivatives, such as those bearing electron-withdrawing groups. The aim of this study was to synthesize two series of benzimidazoles, di- and trisubstituted derivatives, and evaluate their antimycobacterial activity. Accordingly, 5a and 5b were synthesized from hydroxymoyl halides 3a and 3b, and nitro-substituted o-phenylenediamine 4. Compound 11 was synthesized from an aromatic nitro compound, 4-chloro-1,2-phenylenediamine 9, mixed with 3-nitrobenzaldehyde 10, and bentonite clay. Although the synthesis of 11 has already been reported, its antimycobacterial activity is herein examined for the first time. 1,2,5-trisubstituted benzimidazoles 7a, 7b, and 12 were obtained from N-alkylation of 5a, 5b, and 11. All benzimidazole derivatives were characterized by FT-IR, NMR, and HR-MS, and then screened for their in vitro antimycobacterial effect against the M. tuberculosis H37Rv strain. The N-alkylated molecules (7a, 7b, and 12) generated very limited in vitro inhibition of mycobacterial growth. The benzimidazoles (5a, 5b, and 11) showed in vitro potency against mycobacteria, reflected in minimal inhibitory concentration (MIC) values in the range of 6.25-25 μg/mL. Consequently, only the 2,5-disubstituted benzimidazoles were assessed for biological activity on mouse macrophages infected with M. tuberculosis. A good effect was found for the three compounds. The cytotoxicity assay revealed very low toxicity for all the test compounds against the macrophage cell line. According to the docking study, 2,5-disubstituted benzimidazoles exhibit high affinity for an interdomain cleft that plays a key role in the GTP-dependent polymerization of the filamentous temperature-sensitive Z (FtsZ) protein. The ability of different benzimidazoles to impede FtsZ polymerization is reportedly related to their antimycobacterial activity. On the other hand, the 1,2,5-trisubstituted benzimidazoles docked to the N-terminal of the protein, close to the GTP binding domain, and did not show strong binding energies. Overall, 5a, 5b, and 11 proved to be good candidates for in vivo testing to determine their potential for treating tuberculosis.
Collapse
Affiliation(s)
- Rogelio Jiménez-Juárez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Wendy Cruz-Chávez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nayeli de Jesús-Ramírez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Guadalupe Ivonne Castro-Ramírez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Itzel Uribe-González
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriela Martínez-Mejía
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ricardo Ruiz-Nicolás
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Charmina Aguirre-Alvarado
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional, La Raza, IMSS, Mexico City, Mexico.,Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nayeli Shantal Castrejón-Jiménez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo, Mexico
| | - Blanca Estela García-Pérez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
9
|
Simić S, Jeremic S, Djokic L, Božić N, Vujčić Z, Lončar N, Senthamaraikannan R, Babu R, Opsenica IM, Nikodinovic-Runic J. Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. Enzyme Microb Technol 2020; 132:109411. [DOI: 10.1016/j.enzmictec.2019.109411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 01/17/2023]
|
10
|
Sdahl M, Conrad J, Braunberger C, Beifuss U. Efficient and sustainable laccase-catalyzed iodination of p-substituted phenols using KI as iodine source and aerial O 2 as oxidant. RSC Adv 2019; 9:19549-19559. [PMID: 35519358 PMCID: PMC9065379 DOI: 10.1039/c9ra02541c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/27/2019] [Indexed: 11/26/2022] Open
Abstract
The laccase-catalyzed iodination of p-hydroxyarylcarbonyl- and p-hydroxyarylcarboxylic acid derivatives using KI as iodine source and aerial oxygen as the oxidant delivers the corresponding iodophenols in a highly efficient and sustainable manner with yields up to 93% on a preparative scale under mild reaction conditions.
Collapse
Affiliation(s)
- Mark Sdahl
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim Garbenstr. 30 Stuttgart D-70599 Germany +49 711 459 22951 +49 711 459 22171
| | - Jürgen Conrad
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim Garbenstr. 30 Stuttgart D-70599 Germany +49 711 459 22951 +49 711 459 22171
| | - Christina Braunberger
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim Garbenstr. 30 Stuttgart D-70599 Germany +49 711 459 22951 +49 711 459 22171
| | - Uwe Beifuss
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim Garbenstr. 30 Stuttgart D-70599 Germany +49 711 459 22951 +49 711 459 22171
| |
Collapse
|
11
|
Shariati M, Imanzadeh G, Rostami A, Ghoreishy N, Kheirjou S. Application of laccase/DDQ as a new bioinspired catalyst system for the aerobic oxidation of tetrahydroquinazolines and Hantzsch 1,4-dihydropyridines. CR CHIM 2019. [DOI: 10.1016/j.crci.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Maphupha M, Juma WP, de Koning CB, Brady D. A modern and practical laccase-catalysed route suitable for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. RSC Adv 2018; 8:39496-39510. [PMID: 35558053 PMCID: PMC9090715 DOI: 10.1039/c8ra07377e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/19/2018] [Indexed: 01/30/2023] Open
Abstract
Heterocyclic aromatic compounds containing an imine (C[double bond, length as m-dash]N) bond such as benzimidazoles and benzothiazoles are important active pharmaceutical ingredients. The synthesis of 2-aryl-1H-benzimidazoles and 2-arylbenzothiazoles in good to excellent yields was achieved by reacting 2-aminoaromatics with various benzaldehyde derivatives catalysed by the commercial laccases Novoprime and Suberase® at room temperature and in the presence of atmospheric oxygen.
Collapse
Affiliation(s)
- Mudzuli Maphupha
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg South Africa +27-11-7176745
| | - Wanyama P Juma
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg South Africa +27-11-7176745
| | - Charles B de Koning
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg South Africa +27-11-7176745
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg South Africa +27-11-7176745
| |
Collapse
|
13
|
Mamedov VA, Khafizova EA, Syakaev VV, Gubaidullin AT, Samigullina AI, Algaeva NE, Latypov SK. The rearrangement of 1H,1′H-spiro[quinoline-4,2′-quinoxaline]-2,3′ (3H,4′H)-diones – a new and efficient method for the synthesis of 4-(benzimidazol-2-yl)quinolin-2(1H)-ones. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Vetr F, Moradi-Shoeili Z, Özkar S. Oxidation of o-phenylenediamine to 2,3-diaminophenazine in the presence of cubic ferrites MFe2
O4
(M = Mn, Co, Ni, Zn) and the application in colorimetric detection of H2
O2. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4465] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fahime Vetr
- Department of Chemistry, Faculty of Sciences; University of Guilan; P.O. Box 41335-1914 Rasht Iran
| | - Zeinab Moradi-Shoeili
- Department of Chemistry, Faculty of Sciences; University of Guilan; P.O. Box 41335-1914 Rasht Iran
| | - Saim Özkar
- Department of Chemistry; Middle East Technical University; 06800 Ankara Turkey
| |
Collapse
|
15
|
An efficient NaHSO3-promoted protocol for chemoselective synthesis of 2-substituted benzimidazoles in water. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0367-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Abdel-Mohsen HT, Conrad J, Harms K, Nohr D, Beifuss U. Laccase-catalyzed green synthesis and cytotoxic activity of novel pyrimidobenzothiazoles and catechol thioethers. RSC Adv 2017. [DOI: 10.1039/c6ra28102h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Laccase-catalyzed green reaction between catechols and 2-thioxopyrimidin-4-ones delivers novel pyrimidobenzothiazoles and catechol thioethers with antiproliferative activities against HepG2 cell line.
Collapse
Affiliation(s)
- H. T. Abdel-Mohsen
- Chemistry of Natural and Microbial Products Department
- Pharmaceutical Industries Research Division
- National Research Centre
- Cairo
- Egypt
| | - J. Conrad
- Bioorganische Chemie
- Institut für Chemie
- Universität Hohenheim
- Stuttgart
- Germany
| | - K. Harms
- Fachbereich Chemie
- Universität Marburg
- D-35032 Marburg
- Germany
| | - D. Nohr
- Institut für Biologische Chemie und Ernährungswissenschaft
- Universität Hohenheim
- Stuttgart
- Germany
| | - U. Beifuss
- Bioorganische Chemie
- Institut für Chemie
- Universität Hohenheim
- Stuttgart
- Germany
| |
Collapse
|
17
|
Borodkin GS, Ukhin LY, Belousova LV, Shepelenko EN, Alekseenko AV. Opianic Acid in the Synthesis of Benzimidazole Derivatives. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-1923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Laccase catalysis for the synthesis of bioactive compounds. Appl Microbiol Biotechnol 2016; 101:13-33. [PMID: 27872999 DOI: 10.1007/s00253-016-7987-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
The demand for compounds of therapeutic value is increasing mainly because of new applications of bioactive compounds in medicine, pharmaceutical, agricultural, and food industries. This has necessitated the search for cost-effective methods for producing bioactive compounds and therefore the intensification of the search for enzymatic approaches in organic synthesis. Laccase is one of the enzymes that have shown encouraging potential as biocatalysts in the synthesis of bioactive compounds. Laccases are multicopper oxidases with a diverse range of catalytic activities revolving around synthesis and degradative reactions. They have attracted much attention as potential industrial catalysts in organic synthesis mainly because they are essentially green catalysts with a diverse substrate range. Their reaction only requires molecular oxygen and releases water as the only by-product. Laccase catalysis involves the abstraction of a single electron from their substrates to produce reactive radicals. The free radicals subsequently undergo homo- and hetero-coupling to form dimeric, oligomeric, polymeric, or cross-coupling products which have practical implications in organic synthesis. Consequently, there is a growing body of research focused on the synthetic applications of laccases such as organic synthesis, hair and textile dyeing, polymer synthesis, and grafting processes. This paper reviews the major advances in laccase-mediated synthesis of bioactive compounds, the mechanisms of enzymatic coupling, structure-activity relationships of synthesized compounds, and the challenges that might guide future research directions.
Collapse
|
19
|
Immobilized Cu(II)–Schiff base complex on modified Fe3O4 nanoparticles as catalysts in the oxidation of o-phenylenediamine to 2,3-diaminophenazine. REACTION KINETICS MECHANISMS AND CATALYSIS 2016. [DOI: 10.1007/s11144-016-1085-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Khalili D, Banazadeh AR. Graphene Oxide as a Heterogeneous Reagent Promoted Synthesis of 2-Substituted 1,3-Benzazoles in Water. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20150232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dariush Khalili
- Department of Chemistry, College of Sciences, Shiraz University
| | - Ali Reza Banazadeh
- Department of Chemistry and Petrochemical Engineering, Standard Research Institute (SRI)
| |
Collapse
|
21
|
Ghosh P, Subba R. MgCl2·6H2O catalyzed highly efficient synthesis of 2-substituted-1H-benzimidazoles. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Wezeman T, Bräse S, Masters KS. Xanthone dimers: a compound family which is both common and privileged. Nat Prod Rep 2015; 32:6-28. [DOI: 10.1039/c4np00050a] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This Review seeks to systematically describe, for the first time, the widely-occurring and highly biologically-active family of dimeric xanthones from nature, encompassing several aspects of their biosynthesis, occurrence, contrasting structural features and wide variety of bioactivities.
Collapse
Affiliation(s)
- Tim Wezeman
- Institute of Organic Chemistry (IOC)
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC)
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
- Institute of Toxicology and Genetics (ITG)
| | - Kye-Simeon Masters
- Discipline of Nanotechnology and Molecular Sciences
- School of Chemistry
- Physics and Mechanical Engineering
- Faculty of Science and Engineering
- Queensland University of Technology (QUT)
| |
Collapse
|
23
|
Li C, Zhang F, Yang Z, Qi C. Chemoselective synthesis of quinoxalines and benzimidazoles by silica gel catalysis. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Singha S, Panda T. Optimization of Laccase Fermentation and Evaluation of Kinetic and Thermodynamic Parameters of a Partially Purified Laccase Produced byDaedalea flavida. Prep Biochem Biotechnol 2014; 45:307-35. [DOI: 10.1080/10826068.2014.887581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Yu J, Shen M, Lu M. Aerobic oxidative synthesis of 2-arylbenzimidazoles, 2-arylbenzoxazoles, and 2-arylbenzothiazoles from arylmethanols or arylmethylamines catalyzed by Fe(III)/TEMPO under solvent-free conditions. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2014. [DOI: 10.1007/s13738-014-0537-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Patel AB, Kumari P, Chikhalia KH. One-Pot Synthesis of Novel Quinoline-Fused Azeto[1,2-a]benzimidazole Analogs Via Intramolecular Pd-Catalyzed C–N Coupling. Catal Letters 2014. [DOI: 10.1007/s10562-014-1266-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Mogharabi M, Faramarzi MA. Laccase and Laccase-Mediated Systems in the Synthesis of Organic Compounds. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300960] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
28
|
Emirdağ-Öztürk S, Hajdok S, Conrad J, Beifuss U. Laccase-catalyzed reaction of 3-tert-butyl-1H-pyrazol-5(4H)-one with substituted catechols using air as an oxidant. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Asta C, Schmidt D, Conrad J, Förster-Fromme B, Tolasch T, Beifuss U. The first enzymatic Achmatowicz reaction: selective laccase-catalyzed synthesis of 6-hydroxy-(2H)-pyran-3(6H)-ones and (2H)-pyran-2,5(6H)-diones. RSC Adv 2013. [DOI: 10.1039/c3ra44107e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
|
31
|
|
32
|
|
33
|
Ai W, Zhou W, Du Z, Du Y, Zhang H, Jia X, Xie L, Yi M, Yu T, Huang W. Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm35234f] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
|
35
|
|
36
|
Hajdok S, Conrad J, Beifuss U. Laccase-catalyzed domino reactions between hydroquinones and cyclic 1,3-dicarbonyls for the regioselective synthesis of substituted p-benzoquinones. J Org Chem 2011; 77:445-59. [PMID: 22117114 DOI: 10.1021/jo202082v] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Highly substituted p-benzoquinones were obtained in yields ranging from 39% to 98% by laccase-catalyzed domino reactions between hydroquinones and cyclic 1,3-dicarbonyls using aerial oxygen as the oxidant. In almost all reactions bis-adducts with two adjacent 1,3-dicarbonyl substituents on the quinone moiety were formed selectively. The transformations can be regarded as domino oxidation/1,4-addition/oxidation/1,4-addition/oxidation processes. With unsubstituted hydroquinone as the substrate 2,3-disubstituted p-benzoquinones were isolated. Bis-adducts were also formed exclusively upon reaction with monosubstituted hydroquinones. In almost all cases the 2,3,5-trisubstituted p-benzoquinones were obtained. When 2,3-disubstituted hydroquinones were employed as starting materials the 2,3,5,6-tetrasubstituted p-benzoquinones were isolated. The unambiguous structure elucidation of all products has been achieved by NMR spectroscopic methods including spin pattern analysis of the long-range coupled C═O carbons and (13)C satellites analysis in (1)H NMR spectra.
Collapse
Affiliation(s)
- Szilvia Hajdok
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany
| | | | | |
Collapse
|
37
|
|