1
|
Zhang W, Zhao J, Yang D. Anion-Coordination-Driven Assembly: From Discrete Supramolecular Self-Assemblies to Functional Soft Materials. Chempluschem 2022; 87:e202200294. [PMID: 36410745 DOI: 10.1002/cplu.202200294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Indexed: 01/31/2023]
Abstract
Anion templated assembly of supramolecular systems has been extensively explored in previous reports, whereas anions serve only as an auxiliary and spectator role. With the development of anion coordination chemistry in recent years, anion coordination-driven assembly (ACDA) has emerged as a new strategy for the construction of supramolecular self-assemblies. Anions are proved to exist as the main actors in the construction of supramolecular architectures, i. e., serve as the coordination center. This Review will focus on the recent progress in anion-coordination-driven assembly of discrete supramolecular architectures, such as helicates, polyhedrons and polygons, and the various applications of 'aniono'-systems. At the end of this Review, we highlight current challenges and opportunities for future research of anion-coordination-driven self-assembly.
Collapse
Affiliation(s)
- Wenyao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China.,Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, 030006, P. R. China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, P. R. China
| | - Dong Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
2
|
Patel S, Bariya D, Mishra R, Mishra S. Bile acid-based receptors and their applications in recognition. Steroids 2022; 179:108981. [PMID: 35176289 DOI: 10.1016/j.steroids.2022.108981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/13/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Ion recognition has attracted great attention in the past decades because of its important role in biology, medicine, environment, and chemistry. The combination of rigidity, curved structure and amphiphilic nature makes bile acids a host system for ion recognition. In addition, the availability of hydroxyl groups in bile acids can be used for further derivatization to develop various ion recognition receptors. The detection of ions is revealed by the binding constant ka value, log approach, and UV-visible or 1H NMR titration, while visual detection is determined by gel-phase transition, colorimetric and fluorescent probes. In this review, we have discussed the bile acid-based receptors and their ion-recognition capability. These bile acid-based systems have the potential for the development of anion transport for biological activity.
Collapse
Affiliation(s)
- Sejal Patel
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gujarat, 382426 India
| | - Dipakkumar Bariya
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gujarat, 382426 India
| | - Roli Mishra
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gujarat, 382426 India.
| | - Satyendra Mishra
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gujarat, 382426 India.
| |
Collapse
|
3
|
Paul S, Majumdar T, Mallick A. Hydrogen bond regulated hydrogen sulfate ion recognition: an overview. Dalton Trans 2021; 50:1531-1549. [PMID: 33439195 DOI: 10.1039/d0dt03611k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hydrogen sulfate possesses substantial biological importance, having a colossal impact on physiological and environmental events. Therefore, several scientific groups have devoted serious effort to the development of versatile colorimetric and fluorimetric HSO4- sensors. Along with the scope, challenges, and significance, this review emphasizes the advancement of the optical recognition of HSO4- based on hydrogen bonding during the past two decades. Moreover, hydrogen-bond-driven proton transfer, ESIPT, ICT, PET, CHEF, and TBET mechanisms that allow for the optical detection of HSO4- are also discussed concisely. The foundation of this review includes the key points of the sensing process, like the nature of spectroscopic changes, selectivity and sensitivity, naked-eye color changes, the reusability of sensors, and the in vivo detection of HSO4-, if any. Special attention is focused on the correlation between the photophysical changes and the underlying interaction mechanisms that triggered the recognition aspect.
Collapse
Affiliation(s)
- Suvendu Paul
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal-741235, India.
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal-741235, India.
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal-713340, India.
| |
Collapse
|
4
|
Hu Y, Long S, Fu H, She Y, Xu Z, Yoon J. Revisiting imidazolium receptors for the recognition of anions: highlighted research during 2010-2019. Chem Soc Rev 2020; 50:589-618. [PMID: 33174897 DOI: 10.1039/d0cs00642d] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazolium based receptors selectively recognize anions, and have received more and more attention. In 2006 and 2010, we reviewed the mechanism and progress of imidazolium salt recognition of anions, respectively. In the past ten years, new developments have emerged in this area, including some new imidazolium motifs and the identification of a wider variety of biological anions. In this review, we discuss the progress of imidazolium receptors for the recognition of anions in the period of 2010-2019 and highlight the trends in this area. We first classify receptors based on motifs, including some newly emerging receptors, as well as new advances in existing receptor types at this stage. Then we discuss separately according to the types of anions, including ATP, GTP, DNA and RNA.
Collapse
Affiliation(s)
- Ying Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | | | | | | | | | | |
Collapse
|
5
|
Kashyap S, Singh R, Singh UP. Inorganic and organic anion sensing by azole family members. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213369] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
|
7
|
Muwal PK, Nayal A, Jaiswal MK, Pandey PS. A dipyrromethane based receptor as a dual colorimetric sensor for F− and Cu2+ ions. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.11.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Jaiswal MK, Muwal PK, Pandey S, Pandey PS. A novel hybrid macrocyclic receptor based on bile acid and calix[4]arene frameworks for metal ion recognition. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
White NG, Colaço AR, Marques I, Félix V, Beer PD. Halide selective anion recognition by an amide-triazolium axle containing [2]rotaxane. Org Biomol Chem 2015; 12:4924-31. [PMID: 24876069 DOI: 10.1039/c4ob00801d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A new rotaxane containing the 3-amido-phenyl-triazolium group incorporated into the interlocked structure's axle component has been prepared by a chloride anion templated clipping strategy. Proton NMR titration experiments reveal that the interlocked host displays a high degree of halide anion recognition in competitive 1 : 1 CDCl3-CD3OD solvent mixture. Chloride and bromide anions are bound strongly and selectively, with negligible complexation of the larger, more basic oxoanions, acetate and dihydrogen phosphate being observed. Density functional theory calculations on the related axle motifs 3-amido-phenyl-triazolium, pyridinium bis-triazole and pyridinium bis-amide were performed, and indicate that the new rotaxane axle motif displays much weaker oxoanion binding than the pyridinium based systems.
Collapse
Affiliation(s)
- Nicholas G White
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | | | | | | | | |
Collapse
|
10
|
Busschaert N, Caltagirone C, Van Rossom W, Gale PA. Applications of Supramolecular Anion Recognition. Chem Rev 2015; 115:8038-155. [PMID: 25996028 DOI: 10.1021/acs.chemrev.5b00099] [Citation(s) in RCA: 876] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Claudia Caltagirone
- ‡Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy
| | - Wim Van Rossom
- †Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Philip A Gale
- †Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
11
|
Kleinsmann AJ, Weckenmann NM, Nachtsheim BJ. Phosphate-Triggered Self-Assembly ofN-[(Uracil-5-yl)methyl]urea: A Minimalistic Urea-Derived Hydrogelator. Chemistry 2014; 20:9753-61. [DOI: 10.1002/chem.201402916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Indexed: 11/07/2022]
|
12
|
Muwal PK, Pandey S, Pandey PS. A novel dansyl-appended bile acid receptor for preferential recognition of Hg2+. RSC Adv 2014. [DOI: 10.1039/c4ra02460e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel dansyl appended bile acid receptor has been synthesized using click chemistry which shows high selectivity for Hg2+ ions.
Collapse
Affiliation(s)
- Pradeep K. Muwal
- Department of Chemistry
- Indian Institute of Technology, Delhi
- New Delhi-110016, India
| | - Shubha Pandey
- Department of Chemistry
- Indian Institute of Technology, Delhi
- New Delhi-110016, India
| | - Pramod S. Pandey
- Department of Chemistry
- Indian Institute of Technology, Delhi
- New Delhi-110016, India
| |
Collapse
|
13
|
Tripathi A, Kumar A, Pandey PS. Visual chiral recognition of mandelic acid and α-amino acid derivatives by enantioselective gel formation and precipitation. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Chen D, Lu W, Du G, Jiang L, Ling J, Shen Z. A chiral polymer-based turn-on fluorescent sensor for specific recognition of hydrogen sulfate. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Svobodová H, Noponen V, Kolehmainen E, Sievänen E. Recent advances in steroidal supramolecular gels. RSC Adv 2012. [DOI: 10.1039/c2ra01343f] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|