1
|
Lu J, Celuszak H, Paci I, Leitch DC. Interrogating Explicit Solvent Effects on the Mechanism and Site-Selectivity of Aryl Halide Oxidative Addition to L 2Pd(0). Chemistry 2024:e202402283. [PMID: 39160135 DOI: 10.1002/chem.202402283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
We report a study of solvent effects on the rate, selectivity, and mechanism of (hetero)aryl (pseudo)halide oxidative addition to Pd(PCy3)2 as an exemplar of L2Pd(0) species. First, 2-chloro-3-aminopyridine is observed to undergo faster oxidative addition in toluene compared to more polar solvents, which is not consistent with the trend we observe with many other 2-halopyridines. We attribute this to solvent basicity hydrogen bonding between solvent and substrate. Greater hydrogen bond donation from the substrate leads to a more electron-rich aromatic system, and therefore slower oxidative addition. We demonstrate how this affects rate and site-selectivity for hydrogen bond donating substrates. Second, electron-deficient multihalogenated pyridines exhibit improved site-selectivity in polar solvents, which we attribute to different C-X sites undergoing oxidative addition by two different mechanisms. The C-X site that favours the more polar nucleophilic displacement transition state is preferred over the site that favours a less-polar 3-centered transition state. Finally, (hetero)aryl triflates consistently undergo faster oxidative addition in more polar solvents, which we attribute to highly polar nucleophilic displacement transition states. This leads to improved site-selectivity for C-OTf oxidative addition, even in the presence of highly reactive 2-pyridyl halides.
Collapse
Affiliation(s)
- Jingru Lu
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5 C2, Canada
| | - Holly Celuszak
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5 C2, Canada
| | - Irina Paci
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5 C2, Canada
| | - David C Leitch
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5 C2, Canada
| |
Collapse
|
2
|
Chen Z, Gu C, Yuen OY, So CM. Palladium-catalyzed chemoselective direct α-arylation of carbonyl compounds with chloroaryl triflates at the C-Cl site. Chem Sci 2022; 13:4762-4769. [PMID: 35655875 PMCID: PMC9067565 DOI: 10.1039/d1sc06701j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/02/2022] [Indexed: 01/13/2023] Open
Abstract
This study described palladium-catalyzed chemoselective direct α-arylation of carbonyl compounds with chloroaryl triflates in the Ar–Cl bond. The Pd/SelectPhos system showed excellent chemoselectivity toward the Ar–Cl bond in the presence of the Ar–OTf bond with a broad substrate scope and excellent product yields. The electronic and steric hindrance offered by the –PR2 group of the ligand with the C2-alkyl group was found to be the key factor affecting the reactivity and chemoselectivity of the α-arylation reaction. The chemodivergent approach was also successfully employed in the synthesis of flurbiprofen and its derivatives (e.g., –OMe and –F). Palladium-catalyzed chemoselective direct α-arylation of carbonyl compounds with chloroaryl triflates in the Ar–Cl bond is reported. The effects of –PR2 and C2-alkyl groups of the ligands are investigated using experimental and computational methods.![]()
Collapse
Affiliation(s)
- Zicong Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| | - Changxue Gu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| | - On Ying Yuen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| | - Chau Ming So
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China .,The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 Guangdong China
| |
Collapse
|
3
|
Reeves EK, Entz ED, Neufeldt SR. Chemodivergence between Electrophiles in Cross-Coupling Reactions. Chemistry 2021; 27:6161-6177. [PMID: 33206420 DOI: 10.1002/chem.202004437] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/14/2022]
Abstract
Chemodivergent cross-couplings are those in which either one of two (or more) potentially reactive functional groups can be made to react based on choice of conditions. In particular, this review focuses on cross-couplings involving two different (pseudo)halides that can compete for the role of the electrophilic coupling partner. The discussion is primarily organized by pairs of electrophiles including chloride vs. triflate, bromide vs. triflate, chloride vs. tosylate, and halide vs. halide. Some common themes emerge regarding the origin of selectivity control. These include catalyst ligation state and solvent polarity or coordinating ability. However, in many cases, further systematic studies will be necessary to deconvolute the influences of metal identity, ligand, solvent, additives, nucleophilic coupling partner, and other factors on chemoselectivity.
Collapse
Affiliation(s)
- Emily K Reeves
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| | - Emily D Entz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| | - Sharon R Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| |
Collapse
|
4
|
Kutsumura N, Shibuya K, Yamaguchi H, Saito T. n-Butyllithium-promoted regioselective elimination of vicinal bis-triflate having an adjacent ether oxygen. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Shen C, Wei Z, Jiao H, Wu XF. Ligand- and Solvent-Tuned Chemoselective Carbonylation of Bromoaryl Triflates. Chemistry 2017. [DOI: 10.1002/chem.201702015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaoren Shen
- Leibniz-Institut für Katalyse e.V.; Universität Rostock; Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Zhihong Wei
- Leibniz-Institut für Katalyse e.V.; Universität Rostock; Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V.; Universität Rostock; Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V.; Universität Rostock; Albert-Einstein-Strasse 29a 18059 Rostock Germany
- Department of Chemistry; Zhejiang Sci-Tech University, Xiasha Campus; Hangzhou 310018 P.R. China
| |
Collapse
|
6
|
Kalvet I, Magnin G, Schoenebeck F. Rapid Room-Temperature, Chemoselective Csp2
−Csp2
Coupling of Poly(pseudo)halogenated Arenes Enabled by Palladium(I) Catalysis in Air. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609635] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Indrek Kalvet
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Guillaume Magnin
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
7
|
Kalvet I, Magnin G, Schoenebeck F. Rapid Room-Temperature, Chemoselective Csp2 -Csp2 Coupling of Poly(pseudo)halogenated Arenes Enabled by Palladium(I) Catalysis in Air. Angew Chem Int Ed Engl 2016; 56:1581-1585. [PMID: 28032945 PMCID: PMC5299498 DOI: 10.1002/anie.201609635] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/04/2016] [Indexed: 11/23/2022]
Abstract
While chemoselectivities in Pd0‐catalyzed coupling reactions are frequently non‐intuitive and a result of a complex interplay of ligand/catalyst, substrate, and reaction conditions, we herein report a general method based on PdI that allows for an a priori predictable chemoselective Csp2
−Csp2
coupling at C−Br in preference to C−OTf and C−Cl bonds, regardless of the electronic or steric bias of the substrate. The C−C bond formations are extremely rapid (<5 min at RT) and are catalyzed by an air‐ and moisture‐stable PdI dimer under open‐flask conditions.
Collapse
Affiliation(s)
- Indrek Kalvet
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Guillaume Magnin
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
8
|
Okano K, Sunahara K, Yamane Y, Hayashi Y, Mori A. One-Pot Halogen Dance/Negishi Coupling of Dibromothiophenes for Regiocontrolled Synthesis of Multiply Arylated Thiophenes. Chemistry 2016; 22:16450-16454. [DOI: 10.1002/chem.201604293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Kentaro Okano
- Department of Chemical Science and Engineering; Kobe University; 1-1 Rokkodai, Nada Kobe 657-8501 Japan
| | - Kazuhiro Sunahara
- Department of Chemical Science and Engineering; Kobe University; 1-1 Rokkodai, Nada Kobe 657-8501 Japan
| | - Yoshiki Yamane
- Department of Chemical Science and Engineering; Kobe University; 1-1 Rokkodai, Nada Kobe 657-8501 Japan
| | - Yuki Hayashi
- Department of Chemical Science and Engineering; Kobe University; 1-1 Rokkodai, Nada Kobe 657-8501 Japan
| | - Atsunori Mori
- Department of Chemical Science and Engineering; Kobe University; 1-1 Rokkodai, Nada Kobe 657-8501 Japan
| |
Collapse
|
9
|
HAJIPOUR ABDOLREZA, SHIRDASHTZADE ZOHRE, AZIZI GHOBAD. Silica-acac-supported palladium nanoparticles as an efficient and reusable heterogeneous catalyst in the Suzuki–Miyaura cross-coupling reaction in water. J CHEM SCI 2014. [DOI: 10.1007/s12039-013-0561-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Ashcroft CP, Fussell SJ, Wilford K. Catalyst controlled regioselective Suzuki cross-coupling of 2-(4-bromophenyl)-5-chloropyrazine. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.06.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Rossi R, Bellina F, Lessi M. Selective Palladium-Catalyzed Suzuki-Miyaura Reactions of Polyhalogenated Heteroarenes. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201100942] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Tang J, Zhao X. Synthesis of 2,5-disubstituted thiophenes via metal-free sulfur heterocyclization of 1,3-diynes with sodium hydrosulfide. RSC Adv 2012. [DOI: 10.1039/c2ra20326j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|