1
|
Walby GD, Gu Q, Yang H, Martin SF. Structure-Affinity relationships of novel σ 2R/TMEM97 ligands. Bioorg Chem 2024; 145:107191. [PMID: 38432153 DOI: 10.1016/j.bioorg.2024.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
The sigma 2 receptor (σ2R), which was recently identified as the transmembrane protein 97 (TMEM97), is increasingly attracting interest as a possible therapeutic target for indications in neuroscience. Toward identifying novel modulators of σ2R/TMEM97, we prepared a collection of benzoxazocine, benzomorphan, and methanobenzazepine ligands related to the known bioactive norbenzomorphans DKR-1677, FEM-1689, and EES-1686 and determined their Ki values for σ2R/TMEM97 and the sigma 1 receptor (σ1R). The σ2R/TMEM97 binding affinities and selectivities relative to σ1R of these new benzoxazocine, benzomorphan, and methanobenzazepine analogs are lower, often significantly lower, than their respective norbenzomorphan counterparts, suggesting the spatial orientation of pharmacophoric substituents is critical for binding to the two proteins. The benzoxazocine, benzomorphan, and methanobenzazepine congeners of DKR-1677 and FEM-1689 tend to be weakly selective for σ2R/TMEM97 versus σ1R, whereas EES-1686 derivatives exhibit the greatest selectivity, suggesting the size and/or nature of the substituent on the nitrogen atom of the scaffold may be important for selectivity. Computational docking studies were performed for the 1S,5R-and 1R,5S-enantiomers of DKR-1677, FEM-1689, and EES-1686 and their benzoxazocine, benzomorphan, and methanobenzazepine counterparts. These computations predict that the protonated amino group of each ligand forms a highly conserved salt bridge and a H-bonding interaction with Asp29 as well as a cation-π interaction with Tyr150 of σ2R/TMEM97. These electrostatic interactions are major driving forces for binding to σ2R/TMEM97 and are similar, though not identical, for each ligand. Other interactions within the well-defined binding pocket also tend to be comparable, but there are some major differences in how the hydrophobic aryl groups of various ligands interact with the protein surface external to the binding pocket. Overall, these studies show that the orientations of aryl and N-substituents on the norbenzomorphan and related scaffolds are important determinants of binding affinity of σ2R/TMEM97 ligands, and small changes can have significant effects upon binding profiles.
Collapse
Affiliation(s)
- Grant D Walby
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States
| | - Qi Gu
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States
| | - Hongfen Yang
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States
| | - Stephen F Martin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
2
|
Martin SF. Bridging Known and Unknown Unknowns: From Natural Products and Their Mimics to Unmet Needs in Neuroscience. Acc Chem Res 2022; 55:2397-2408. [PMID: 35960884 DOI: 10.1021/acs.accounts.1c00773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Scientific excursions into the unknown are often characterized by unanticipated twists and turns that may lead in directions that never could have been predicted. Decisions made during the course of these explorations determine what we discover. This Account chronicles one such journey that began with a challenge encountered during the synthesis of a natural product and then unfolded over more than 30 years to focus on unmet needs in neuroscience. Specifically, while developing a concise approach to tetrahydroalstonine, a heteroyohimboid alkaloid having α-adrenergic activity, we faced the predicament of assembling a key intermediate. Solving this problem resulted in the serendipitous discovery of the vinylogous Mannich reaction and a productive program wherein we used this powerful construction as a key step in the syntheses of numerous alkaloids. However, we also realized that lessons learned from the synthesis of tetrahydroalstonine could be generalized to invent a new strategy for preparing diverse collections of substituted nitrogen heterocycles that could be screened against biological targets. The approach featured the combination of several reactants in a multicomponent assembly process to give a functionalized intermediate that could be elaborated by various ring-forming reactions to give heterocyclic scaffolds that could be further diversified. Screening these compound sets against a broad range of biological targets revealed some intriguing hits, but none of them led to a productive collaboration in translational research. Notwithstanding this setback, we screened curated members of our collections against proteins in the central nervous system and discovered some substituted B-norbenzomorphans that were selective for the enigmatic sigma-2 receptor (σ2R), an understudied protein that had been primarily associated with cancer. With scant knowledge of its role in neuroscience, we posited that small molecules that bind to σ2R might be neuroprotective, thus launching a new venture. In parallel investigations we prepared analogues of the initial hits, explored their effects in animal models of neurodegenerative and neurological conditions, and identified σ2R as transmembrane protein 97 (TMEM97). After first establishing the neuroprotective effects of several σ2R/TMEM97 ligands in a transgenic Caenorhabditis elegans model of neurodegeneration, we showed that one of these has procognitive effects and reduces levels of proinflammatory cytokines in a transgenic mouse model of Alzheimer's disease. We then identified a closely related σ2R/TMEM97 ligand that mitigates hippocampal-dependent memory deficits, prevents axon degeneration, and protects neurons and oligodendrocytes after traumatic brain injury. In a recent study, this compound was shown to protect retinal ganglion cells from retinal ischemia/reperfusion injury. In other collaborative investigations, we have shown that related, but structurally distinct, σ2R/TMEM97 ligands alleviate neuropathic pain, while a σ2R/TMEM97 ligand representing yet another chemotype reduces impairments associated with alcohol withdrawal. More recently, we have shown that σ2R/TMEM97 ligands enhance survival of cortical neurons in a neuronal model of Huntington's disease. Translational and mechanistic studies in these and other areas are in progress. Solving a problem we faced in natural product synthesis thus served as an unexpected gateway to discoveries that could lead to entirely new approaches to treat neurodegenerative and neurological conditions by targeting σ2R/TMEM97, a protein that has never been associated with these afflictions.
Collapse
Affiliation(s)
- Stephen F Martin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Shkurko OP. Bridged 1,3(1,5)-benzoxazocines and 1,3,5-benzoxadiazocines as products of the Hantzsch and Biginelli reactions. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Abeykoon GA, Sahn JJ, Martin SF. Novel substituted triazolo benzodiazepine scaffolds to explore chemical space. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Vachan BS, Karuppasamy M, Jan G, Bhuvanesh N, Maheswari CU, Sridharan V. Direct Access to Bridged Tetrahydroquinolines and Chromanes via an InCl 3-Catalyzed Sequential Three-Component Cascade. J Org Chem 2020; 85:8062-8073. [PMID: 32452689 DOI: 10.1021/acs.joc.0c00893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A sequential three-component cascade process was developed for the synthesis of bridged tetrahydroquinolines and chromanes bearing 2,6-methanobenzo[d][1,3]diazocine and 2,6-methanobenzo[g][1,3]oxazocine scaffolds, respectively, in good yields from readily available materials. The InCl3-catalyzed reaction progressed via enamine formation, Michael addition, intramolecular cyclization, and intramolecular iminium ion cyclization steps. Notably, this high atom economic approach (-2H2O) allowed the generation of four new bonds (1 C-C and 3 C-N or 1 C-C, 1 C-O and 2 C-N) and two heterocyclic rings in a single operation.
Collapse
Affiliation(s)
- B S Vachan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Muthu Karuppasamy
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Gowsia Jan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Samba, Jammu 181143, Jammu and Kashmir, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.,Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Samba, Jammu 181143, Jammu and Kashmir, India
| |
Collapse
|
6
|
Abstract
Human African trypanosomiasis (HAT) is a deadly neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. During the course of screening a collection of diverse nitrogenous heterocycles, we discovered two novel compounds that contain the tetracyclic core of the Yohimbine and Corynanthe alkaloids, were potent inhibitors of T. brucei proliferation and T. brucei methionyl-tRNA synthetase (TbMetRS) activity. Inspired by these key findings, we prepared several novel series of hydroxyalkyl δ-lactam, δ-lactam, and piperidine analogs and tested their anti-trypanosomal activity. A number of inhibitors are more potent against T. brucei than these initial hits with one hydroxyalkyl δ-lactam derivative being 25-fold more effective in our assay. Surprisingly, most of these active compounds failed to inhibit TbMetRS. This work underscores the importance of verifying, irrespective of close structural similarities, that new compounds designed from a lead with a known biological target engage the putative binding site.
Collapse
|
7
|
Madani Qamsari F, Moradi S, Foroumadi A, Mahdavi M, Moghimi A. Tandem synthesis of benzo[d]naphtho[2,3-g][1,3]oxazocine-8,13(6H,14H)-dione derivatives. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-018-2322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Henry MC, Senn HM, Sutherland A. Synthesis of Functionalized Indolines and Dihydrobenzofurans by Iron and Copper Catalyzed Aryl C-N and C-O Bond Formation. J Org Chem 2018; 84:346-364. [PMID: 30520304 DOI: 10.1021/acs.joc.8b02888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A simple and effective one-pot, two-step intramolecular aryl C-N and C-O bond forming process for the preparation of a wide range of benzo-fused heterocyclic scaffolds using iron and copper catalysis is described. Activated aryl rings were subjected to a highly regioselective, iron(III) triflimide-catalyzed iodination, followed by a copper(I)-catalyzed intramolecular N- or O-arylation step leading to indolines, dihydrobenzofurans, and six-membered analogues. The general applicability and functional group tolerance of this method were exemplified by the total synthesis of the neolignan natural product, (+)-obtusafuran. DFT calculations using Fukui functions were also performed, providing a molecular orbital rationale for the highly regioselective arene iodination process.
Collapse
Affiliation(s)
- Martyn C Henry
- WestCHEM, School of Chemistry, The Joseph Black Building , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Hans Martin Senn
- WestCHEM, School of Chemistry, The Joseph Black Building , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Andrew Sutherland
- WestCHEM, School of Chemistry, The Joseph Black Building , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| |
Collapse
|
9
|
Sahn JJ, Mejia GL, Ray PR, Martin SF, Price TJ. Sigma 2 Receptor/Tmem97 Agonists Produce Long Lasting Antineuropathic Pain Effects in Mice. ACS Chem Neurosci 2017; 8:1801-1811. [PMID: 28644012 PMCID: PMC5715471 DOI: 10.1021/acschemneuro.7b00200] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuropathic pain is an important medical problem with few effective treatments. The sigma 1 receptor (σ1R) is known to be a potential target for neuropathic pain therapeutics, and antagonists for this receptor are effective in preclinical models and are currently in phase II clinical trials. Conversely, relatively little is known about σ2R, which has recently been identified as transmembrane protein 97 (Tmem97). We generated a series of σ1R and σ2R/Tmem97 agonists and antagonists and tested them for efficacy in the mouse spared nerve injury (SNI) model. In agreement with previous reports, we find that σ1R ligands given intrathecally (IT) produce relief of SNI-induced mechanical hypersensitivity. We also find that the putative σ2R/Tmem97 agonists DKR-1005, DKR-1051, and UKH-1114 (Ki ∼ 46 nM) lead to relief of SNI-induced mechanical hypersensitivity, peaking at 48 h after dosing when given IT. This effect is blocked by the putative σ2R/Tmem97 antagonist SAS-0132. Systemic administration of UKH-1114 (10 mg/kg) relieves SNI-induced mechanical hypersensitivity for 48 h with a peak magnitude of effect equivalent to 100 mg/kg gabapentin and without producing any motor impairment. Finally, we find that the TMEM97 gene is expressed in mouse and human dorsal root ganglion (DRG) including populations of neurons that are involved in pain; however, the gene is also likely expressed in non-neuronal cells that may contribute to the observed behavioral effects. Our results show robust antineuropathic pain effects of σ1R and σ2R/Tmem97 ligands, demonstrate that σ2R/Tmem97 is a novel neuropathic pain target, and identify UKH-1114 as a lead molecule for further development.
Collapse
MESH Headings
- Amines/pharmacology
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Cyclohexanecarboxylic Acids/pharmacology
- Disease Models, Animal
- Gabapentin
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Humans
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Male
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Molecular Structure
- Motor Activity/drug effects
- Neuralgia/drug therapy
- Neuralgia/metabolism
- RNA, Messenger/metabolism
- Receptors, sigma/agonists
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/metabolism
- Touch
- gamma-Aminobutyric Acid/pharmacology
- Sigma-1 Receptor
Collapse
Affiliation(s)
- James J. Sahn
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Galo L. Mejia
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Pradipta R. Ray
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Stephen F. Martin
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
10
|
Ghosh M, Ray JK. Ten years advancement in the synthetic applications of 2-bromo-cyclohexenecarbaldehydes and 2-bromobenzaldehydes and derived substrates under palladium-catalyzed cross-coupling conditions. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Wang H, Zhou W, Tao M, Hu A, Zhang J. Functionalized Tetrahydropyridines by Enantioselective Phosphine-Catalyzed Aza-[4 + 2] Cycloaddition of N-Sulfonyl-1-aza-1,3-dienes with Vinyl Ketones. Org Lett 2017; 19:1710-1713. [DOI: 10.1021/acs.orglett.7b00489] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huamin Wang
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Wei Zhou
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Mengna Tao
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Anjing Hu
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
12
|
Imrich HG, Conrad J, Beifuss U. Copper-Catalyzed Double Intramolecular Ullmann Coupling for the Synthesis of Diastereomerically and Enantiomerically Pure 4b,9b-Dihydrobenzofuro[3,2-b]benzofurans. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Cheng B, Sunderhaus JD, Martin SF. Applications of Ring Closing Metathesis. Total Synthesis of (±)-Pseudotabersonine. Tetrahedron 2015; 71:7323-7331. [PMID: 26300565 DOI: 10.1016/j.tet.2015.04.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A novel approach to the Aspidosperma family of alkaloids was developed and applied to a concise total synthesis of (±)-pseudotabersonine that was accomplished in 11 steps. Key transformations include a stepwise variant of a Mannich-like multicomponent assembly process, a double ring-closing metathesis sequence, and a one-pot deprotection/cyclization reaction.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - James D Sunderhaus
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Stephen F Martin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
14
|
Sahn JJ, Granger BA, Martin SF. Evolution of a strategy for preparing bioactive small molecules by sequential multicomponent assembly processes, cyclizations, and diversification. Org Biomol Chem 2014; 12:7659-72. [PMID: 25135846 PMCID: PMC4167917 DOI: 10.1039/c4ob00835a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A strategy for generating diverse collections of small molecules has been developed that features a multicomponent assembly process (MCAP) to efficiently construct a variety of intermediates possessing an aryl aminomethyl subunit. These key compounds are then transformed via selective ring-forming reactions into heterocyclic scaffolds, each of which possesses suitable functional handles for further derivatizations and palladium-catalyzed cross coupling reactions. The modular nature of this approach enables the facile construction of libraries of polycyclic compounds bearing a broad range of substituents and substitution patterns for biological evaluation. Screening of several compound libraries thus produced has revealed a large subset of compounds that exhibit a broad spectrum of medicinally-relevant activities.
Collapse
Affiliation(s)
- James J Sahn
- Department of Chemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712-0165, USA.
| | | | | |
Collapse
|
15
|
Hardy S, Martin SF. Multicomponent, Mannich-type assembly process for generating novel, biologically-active 2-arylpiperidines and derivatives. Tetrahedron 2014; 70:7142-7157. [PMID: 25267860 PMCID: PMC4175438 DOI: 10.1016/j.tet.2014.06.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A multicomponent, Mannich-type assembly process commencing with commercially available bromobenzaldehydes was sequenced with [3+2] dipolar cycloaddition reactions involving nitrones and azomethine ylides to generate collections of fused, bicyclic scaffolds based on the 2-arylpiperidine subunit. Use of the 4-pentenoyl group, which served both as an activator in the Mannich-type reaction and a readily-cleaved amine protecting group, allowed sub-libraries to be prepared through piperidine N-functionalization and cross-coupling of the aryl bromide. A number of these derivatives displayed biological activities that had not previously been associated with this substructure. Methods were also developed that allowed rapid conversion of these scaffolds to novel, polycyclic dihydroquinazolin-2-ones, 2-imino-1,3-benzothiazinanes, dihydroisoquinolin-3-ones and bridged tetrahydroquinolines.
Collapse
Affiliation(s)
- Simon Hardy
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Stephen F. Martin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
16
|
Ransborg LK, Overgaard M, Hejmanowska J, Barfüsser S, Jørgensen KA, Albrecht Ł. Asymmetric formation of bridged benzoxazocines through an organocatalytic multicomponent dienamine-mediated one-pot cascade. Org Lett 2014; 16:4182-5. [PMID: 25084456 DOI: 10.1021/ol501882x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An organocatalytic one-pot cascade leading to the stereoselective formation of novel bridged benzoxazocines is presented. The developed methodology is based on the first example of a γ-selective-Mannich-initiated cascade reaction and allows for direct annulation of the bridged benzoxazocines by incorporation of various α,β-unsaturated aldehydes, electron-rich anilines, and electron-deficient salicylaldehydes. The synthetic applicability of the products is demonstrated by relevant transformations.
Collapse
|
17
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2011. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Lin H, Sun D. RECENT SYNTHETIC DEVELOPMENTS AND APPLICATIONS OF THE ULLMANN REACTION. A REVIEW. ORG PREP PROCED INT 2013; 45. [PMID: 24223434 DOI: 10.1080/00304948.2013.816208] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hao Lin
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI 96720, USA
| | | |
Collapse
|
19
|
Granger BA, Wang Z, Kaneda K, Fang Z, Martin SF. Multicomponent assembly processes for the synthesis of diverse yohimbine and corynanthe alkaloid analogues. ACS COMBINATORIAL SCIENCE 2013; 15:379-86. [PMID: 23697376 DOI: 10.1021/co400055b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy involving a Mannich-type multicomponent assembly process followed by a 1,3-dipolar cycloaddition has been developed for the rapid and efficient construction of parent heterocyclic scaffolds bearing indole and isoxazolidine rings. These key intermediates were then readily elaborated using well-established protocols for refunctionalization and cross-coupling to access a diverse 180-member library of novel pentacyclic and tetracyclic compounds related to the Yohimbine and Corynanthe alkaloids. Several other new multicomponent assembly processes were developed to access dihydro-β-carboline-fused benzodiazepines, pyrimidinediones, and rutaecarpine derivatives.
Collapse
Affiliation(s)
- Brett A. Granger
- Department of Chemistry
and Biochemistry, The Texas Institute for Drug and Diagnostic Development, The University of Texas at Austin, Austin, Texas 78712,
United States
| | - Zhiqian Wang
- Department of Chemistry
and Biochemistry, The Texas Institute for Drug and Diagnostic Development, The University of Texas at Austin, Austin, Texas 78712,
United States
| | - Kyosuke Kaneda
- Department of Chemistry
and Biochemistry, The Texas Institute for Drug and Diagnostic Development, The University of Texas at Austin, Austin, Texas 78712,
United States
| | - Zhenglai Fang
- Department of Chemistry
and Biochemistry, The Texas Institute for Drug and Diagnostic Development, The University of Texas at Austin, Austin, Texas 78712,
United States
| | - Stephen F. Martin
- Department of Chemistry
and Biochemistry, The Texas Institute for Drug and Diagnostic Development, The University of Texas at Austin, Austin, Texas 78712,
United States
| |
Collapse
|
20
|
Martin SF. Strategies for the Synthesis of Alkaloids and Novel Nitrogen Heterocycles. ADVANCES IN HETEROCYCLIC CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-408100-0.00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
21
|
Sahn JJ, Martin SF. Expedient synthesis of norbenzomorphan library via multicomponent assembly process coupled with ring-closing reactions. ACS COMBINATORIAL SCIENCE 2012; 14:496-502. [PMID: 22857149 DOI: 10.1021/co300068a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A 124-member norbenzomorphan library has been prepared utilizing a novel multicomponent assembly process (MCAP) followed by a variety of ring-closing reactions to generate norbenzomorphan scaffolds that were readily derivatized via a series of aryl halide cross-coupling and nitrogen functionalization reactions. Biological screening has revealed some novel activities that have not been previously associated with this class of compounds.
Collapse
Affiliation(s)
- James J. Sahn
- Department of Chemistry and Biochemistry,
The Texas
Institute for Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, United States
| | - Stephen F. Martin
- Department of Chemistry and Biochemistry,
The Texas
Institute for Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Donald JR, Wood RR, Martin SF. Application of a sequential multicomponent assembly process/huisgen cycloaddition strategy to the preparation of libraries of 1,2,3-triazole-fused 1,4-benzodiazepines. ACS COMBINATORIAL SCIENCE 2012; 14:135-43. [PMID: 22273436 DOI: 10.1021/co2002087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A strategy featuring a multicomponent assembly process followed by an intramolecular azide-alkyne dipolar (Huisgen) cycloaddition was implemented for the facile synthesis of three different 1,2,3-triazolo-1,4-benzodiazepine scaffolds. A diverse library of 170 compounds derived from these scaffolds was then created through N-functionalizations, palladium-catalyzed cross-coupling reactions, and several applications of α-aminonitrile chemistry.
Collapse
Affiliation(s)
- James R. Donald
- Department of Chemistry and Biochemistry, The Texas
Institute for Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, United States
| | - Rebekah R. Wood
- Department of Chemistry and Biochemistry, The Texas
Institute for Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, United States
| | - Stephen F. Martin
- Department of Chemistry and Biochemistry, The Texas
Institute for Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Wang Z, Kaneda K, Fang Z, Martin SF. Diversity Oriented Synthesis: Concise Entry to Novel Derivatives of Yohimbine and Corynanthe Alkaloids. Tetrahedron Lett 2012; 53:477-479. [PMID: 22544982 PMCID: PMC3335433 DOI: 10.1016/j.tetlet.2011.10.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
A novel MCAP-cycloaddition sequence has been applied to the facile synthesis of β-carboline intermediates to gain rapid access to novel derivatives of yohimbine-like and corynanthe-like compounds that may be easily diversified by cross-coupling reactions and N-derivatizations to generate small compound libraries.
Collapse
Affiliation(s)
- Zhiqian Wang
- Department of Chemistry and Biochemistry and Texas Institute for Drug and Diagnostic Development, The University of Texas, Austin, TX, 78712, USA
| | - Kyosuke Kaneda
- Department of Chemistry and Biochemistry and Texas Institute for Drug and Diagnostic Development, The University of Texas, Austin, TX, 78712, USA
| | - Zhenglai Fang
- Department of Chemistry and Biochemistry and Texas Institute for Drug and Diagnostic Development, The University of Texas, Austin, TX, 78712, USA
| | - Stephen F. Martin
- Department of Chemistry and Biochemistry and Texas Institute for Drug and Diagnostic Development, The University of Texas, Austin, TX, 78712, USA
| |
Collapse
|
24
|
Ryan JH, Hyland C, Meyer AG, Smith JA, Yin J. Seven-Membered Rings. PROGRESS IN HETEROCYCLIC CHEMISTRY 2012. [DOI: 10.1016/b978-0-08-096807-0.00016-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|