1
|
Synthesis and Photophysical Study of Tetraphenyl Substituted BODIPY Based Phenyl-Monoselenide Probe for Selective Detection of Superoxide. J Fluoresc 2023; 33:437-444. [PMID: 36435906 DOI: 10.1007/s10895-022-03096-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Selenium containing tetraphenyl substituted BODIPY probe was successfully synthesized from respective selenium aldehyde and tetraphenyl pyrrole using Knoevenagel-type condensation. The product was characterized using various spectroscopic techniques (1 H, 13 C, 77Se, 11B, and 19 F) and mass spectrometry. The probe was found to be selective and sensitive towards detection of superoxide over other ROS with a "turn-off" (quenched) fluorescence response. The detection limit of the probe was found to be 4.87 µM. The probe reacted with superoxide in less than a sec with a stoke shift of 35 nm.
Collapse
|
2
|
Feng X, Pan L, Qian Z, Liu D, Guan X, Feng L, Song B, Xu X, Tan N, Ma Y, Li Z, Wang Z, Bian J. Discovery of Selenium-Containing STING Agonists as Orally Available Antitumor Agents. J Med Chem 2022; 65:15048-15065. [PMID: 36069713 DOI: 10.1021/acs.jmedchem.2c00634] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activation of the stimulator of interferon genes (STING) pathway to achieve antitumor response is an attractive approach for cancer immunotherapy. In this study, we report the identification of BSP16 (LF250) as a potent, orally available STING agonist. BSP16 strongly activates STING signaling in human and mouse cells and binds STING as a homodimer. A 2.4 Å cocrystal structure revealed that BSP16 could induce the "closed" conformation of STING. In vivo studies revealed that BSP16 is well tolerated, has an excellent pharmacokinetic profile as an oral drug, and induces tumor regression and durable antitumor immunity. The promising bioactivities of BSP16 make it valuable for further development as an antitumor agent.
Collapse
Affiliation(s)
- Xi Feng
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Lixia Pan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, P. R. China
| | - Zhiyu Qian
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Dongyu Liu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Xin Guan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, P. R. China
| | | | - Bin Song
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Xi Xu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Yi Ma
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Jinlei Bian
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 211100, P. R. China
| |
Collapse
|
3
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
4
|
Darge HF, Lin YH, Hsieh-Chih T, Lin SY, Yang MC. Thermo/redox-responsive dissolvable gelatin-based microsphere for efficient cell harvesting during 3D cell culturing. BIOMATERIALS ADVANCES 2022; 139:213008. [PMID: 35882154 DOI: 10.1016/j.bioadv.2022.213008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The use of microspheres for culturing adherent cells has been proven as an important method, allowing for obtaining adequate number of cells in limited space and volume of medium for the intended cell-based medical applications. However, the use of proteolytic enzymes for cell harvesting from the microsphere resulted in cell damage and loss of functionality. Therefore, in this study, we developed a novel redox/thermo-responsive dissolvable gelatin-based microsphere for successful cell proliferation and harvesting adequate high-quality cells using non-enzymatic cell detachment methods. Initially, a redox-induced dissolvable gelatin-based microsphere was successfully prepared using disulfide bonds as crosslinking agent, firmly stabilizing gelatin networks and forming a stable microsphere at physiological temperature. The optimized concentration of the crosslinking agent was 1.2 mM, which kept the microsphere stable for >120 h. The microsphere was then coated with PNIPAm-ALA copolymer via physical or chemical means, resulting in a positively charged thermosensitive surface. The positive charge derived from ALA in PNIPAm-ALA copolymer enhanced cell attachment, while the thermosensitive property of the copolymer enabled for temperature induced cell harvesting. When the temperature dropped below the LCST value of PNIPAm-ALA5 (33.4°C), the copolymer swelled and became more hydrophilic, allowing cells to be readily separated. The addition of reducing agents such as GSH, DTT and L-cysteine resulted in further cleavage of the disulfide bond in the microsphere and dissolution of the microsphere for complete cell detachment. Interestingly, cell attachment and proliferation were enhanced on microspheres coated with PNIPAm-ALA5 using diselenide as a crosslinking agent, and complete cell detachment was occurred within 15 min after adding 25 mM DTT followed by lowering the temperature (4°C). Therefore, the microsphere fabricated in this study was worthwhile for non-enzymatic cell detachment and has the potential to be used for cell expansion and harvesting adequate live cells of high quality and functionality for tissue engineering or cell therapy.
Collapse
Affiliation(s)
- Haile F Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan; College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Yu-Hsuan Lin
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Tsai Hsieh-Chih
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Shuian-Yin Lin
- Biomedical Technology and Device Research Center, Industrial Technology Research Institute, Hsinchu, Taiwan.
| | - Ming-Chien Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
5
|
Tan YJ, Li M, Gunawan GA, Nyantakyi SA, Dick T, Go ML, Lam Y. Amide-Amine Replacement in Indole-2-carboxamides Yields Potent Mycobactericidal Agents with Improved Water Solubility. ACS Med Chem Lett 2021; 12:704-712. [PMID: 34055215 DOI: 10.1021/acsmedchemlett.0c00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Indolecarboxamides are potent but poorly soluble mycobactericidal agents. Here we found that modifying the incipient scaffold by amide-amine substitution and replacing the indole ring with benzothiophene or benzoselenophene led to striking (10-20-fold) improvements in solubility. Potent activity could be achieved without the carboxamide linker but not in the absence of the indole ring. The indolylmethylamine, N-cyclooctyl-6-trifluoromethylindol-2-ylmethylamine (33, MIC90Mtb 0.13 μM, MBC99.9Mtb 0.63 μM), exemplifies a promising member that is more soluble and equipotent to its carboxamide equivalent. It is also an inhibitor of the mycolate transporter MmpL3, a property shared by the methylamines of benzothiophene and benzoselenophene.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, and Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey 07110, United States
- Department of Microbiology and Immunology, Georgetown University, Washington, D.C. 20057, United States
| | | | | |
Collapse
|
6
|
Takahashi R, Sakamoto K, Umezawa N, Umehara T, Matsuo J. Chemoselective Arylation of Dialkyl Diselenides and Application to the Synthesis of a ε‐
N,N,N
‐Trimethyllysine Derivative. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ryuhei Takahashi
- Division of Pharmaceutical Sciences Graduate School of Medical Sciences Kanazawa University Kakuma‐machi 920‐1192 Kanazawa Japan
| | - Kenta Sakamoto
- Division of Pharmaceutical Sciences Graduate School of Medical Sciences Kanazawa University Kakuma‐machi 920‐1192 Kanazawa Japan
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences Nagoya City University 3‐1 Tanabe‐dori, Mizuho‐ku 467‐8603 Nagoya Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery RIKEN Center for Biosystems Dynamics Research 1‐7–22 Suehiro‐cho, Tsurumi‐ku 230‐0045 Yokohama Japan
| | - Jun‐ichi Matsuo
- Division of Pharmaceutical Sciences Graduate School of Medical Sciences Kanazawa University Kakuma‐machi 920‐1192 Kanazawa Japan
| |
Collapse
|
7
|
Barát V, Stuparu MC. Selenium and Tellurium Derivatives of Corannulene: Serendipitous Discovery of a One-Dimensional Stereoregular Coordination Polymer Crystal Based on Te-O Backbone and Side-Chain Aromatic Array. Chemistry 2020; 26:15135-15139. [PMID: 32935415 DOI: 10.1002/chem.202003989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 12/28/2022]
Abstract
Monobromo-, tetrabromo-, and pentachloro-corannulene are subjected to nucleophilic substitution reactions with tolyl selenide and phenyl telluride-based nucleophiles generated in situ from the corresponding dichalcogenides. In the case of selenium nucleophile, the reaction provides moderate yields (52-77 %) of the targeted corannulene selenoethers. A subsequent oxidation of the selenium atoms proceeds smoothly to furnish corannulene selenones in 81-93 % yield. In the case of tellurides, only monosubstitution of the corannulene scaffold could be achieved albeit with concomitant oxidation of the tellerium atom. Unexpectedly, this monotelluroxide derivative of corannulene (RR'Te=O, R=Ph, R'=corannulene) is observed to form a linear coordination polymer chain in the crystalline state. In this chain, Te-O constitutes the polymer backbone around which the aromatic groups (R and R') arrange as polymer side-chains. The polymer crystal is stabilized through intramolecular π-π stacking interactions of the side-chains and intermolecular hydrogen and halogen bonding interactions with the solvent (chloroform) molecules. Interestingly, each diad of the polymer chain is racemic. Therefore, in terms of stereoregularity, the polymer chain can be described as syndiotactic.
Collapse
Affiliation(s)
- Viktor Barát
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 21-Nanyang Link, 637371, Singapore, Singapore
| | - Mihaiela C Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 21-Nanyang Link, 637371, Singapore, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| |
Collapse
|
8
|
Halle MB, Lee KJ, Yudhistira T, Choi JH, Park HS, Churchill DG. A Hemicyanine-Embedded Diphenylselenide-Containing Probe "HemiSe" in which SePh 2 Stays Reduced for Selective Detection of Superoxide in Living Cells. Chem Asian J 2018; 13:3895-3902. [PMID: 30300960 DOI: 10.1002/asia.201801339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/08/2018] [Indexed: 12/21/2022]
Abstract
A simple one-step synthesis of fluorescent probe HemiSe has been developed for the detection of superoxide (O2 .- ). The probe undergoes reaction specifically with O2 .- when in the presence of other competitive ROS/RNS/metal ions. The diphenylselenide was incorporated to completely quench the fluorescence of the hemicyanine unit through the action of a photoinduced electron transfer (PET) photomechanism. However, after the addition of O2 .- , the latent fluorophore regains its fluorescence owing to the reaction at the C=C bond of the hemicyanine with O2 .- through nucleophilic attack; the increase in blue emission is due to a reaction of the double bond within HemiSe followed by an increase in fluorescence quantum yield (Φ) up to 0.45; the limit of detection (LOD) is 11.9 nm. A time-dependent study shows that HemiSe can detect superoxide within 13 min with high sensitivity, high selectivity, over a wide pH range, and through confirmation with a xanthine/xanthine oxidase biochemical assay (λem =439 nm). A study in the RAW 264.7 macrophage living cells also shows that HemiSe is not toxic, cell permeable (experimental log P=2.11); confocal imaging results show that HemiSe can detect O2 .- in endogenous and exogeneous systems.
Collapse
Affiliation(s)
- Mahesh B Halle
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Kyung Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Tesla Yudhistira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Jae Hyuck Choi
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - David G Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea.,KI for Health Science and Technology, KI Institute, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| |
Collapse
|
9
|
Mhetre AB, Lee H, Yang H, Lee K, Nam DH, Lim D. Synthesis and anticancer activity of benzoselenophene and heteroaromatic derivatives of 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI). Org Biomol Chem 2017; 15:1198-1208. [DOI: 10.1039/c6ob02729f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel benzoselenophene analogs of duocarmycin were prepared. The anticancer activity of the butyramide analog of benzoselenophene was 120 times more potent than the corresponding indole analog.
Collapse
Affiliation(s)
- Amol B. Mhetre
- Department of Chemistry
- Sejong University
- Seoul 143-747
- Republic of Korea
| | - Hangeun Lee
- Department of Chemistry
- Sejong University
- Seoul 143-747
- Republic of Korea
| | - Heekyoung Yang
- Department of Neurosurgery
- Samsung Medical Center
- Sungkyunkwan University School of Medicine
- Seoul
- Republic of Korea
| | - Kyoungmin Lee
- Department of Neurosurgery
- Samsung Medical Center
- Sungkyunkwan University School of Medicine
- Seoul
- Republic of Korea
| | - Do-Hyun Nam
- Department of Neurosurgery
- Samsung Medical Center
- Sungkyunkwan University School of Medicine
- Seoul
- Republic of Korea
| | - Dongyeol Lim
- Department of Chemistry
- Sejong University
- Seoul 143-747
- Republic of Korea
| |
Collapse
|
10
|
Lu W, An X, Gao F, Zhu J, Zhou N, Zhang Z, Pan X, Zhu X. Highly Efficient Chain End Derivatization of Selenol-Ended Polystyrenes by Nucleophilic Substitution Reactions. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Weihong Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| | - Xiaowei An
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| | - Feng Gao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| |
Collapse
|
11
|
Gómez Castaño JA, Romano RM, Salamanca AR, Amésquita G, Beckers H, Willner H, Della Védova CO. Vibrational spectra, conformational properties and argon matrix photochemistry of diacetyl diselenide, CH3C(O)Se2C(O)CH3. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jovanny A. Gómez Castaño
- CEQUINOR (UNLP-CONICET), Departamento de Química, Facultad de Ciencias Exactas; Universidad Nacional de La Plata; 47 esq. 115 1900 La Plata Argentina
- Laboratorio de Química Teórica y Computacional, Grupo de Investigación Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias; Universidad Pedagógica y Tecnológica de Colombia (UPTC); Avenida Central del Norte Tunja Boyacá Colombia
| | - Rosana M. Romano
- CEQUINOR (UNLP-CONICET), Departamento de Química, Facultad de Ciencias Exactas; Universidad Nacional de La Plata; 47 esq. 115 1900 La Plata Argentina
| | - Ana R. Salamanca
- Laboratorio de Química Teórica y Computacional, Grupo de Investigación Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias; Universidad Pedagógica y Tecnológica de Colombia (UPTC); Avenida Central del Norte Tunja Boyacá Colombia
| | - Germán Amésquita
- Grupo de Investigación en Informática, Electrónica y Comunicaciones (INFELCOM), Facultad de Ingenieria; Universidad Pedagógica y Tecnológica de Colombia (UPTC); Avenida Central del Norte Tunja Boyacá Colombia
| | - Helmut Beckers
- Anorganische Chemie; Bergische Universität Wuppertal; Gaußstr. 20 D-42097 Wuppertal Germany
| | - Helge Willner
- Anorganische Chemie; Bergische Universität Wuppertal; Gaußstr. 20 D-42097 Wuppertal Germany
| | - Carlos O. Della Védova
- CEQUINOR (UNLP-CONICET), Departamento de Química, Facultad de Ciencias Exactas; Universidad Nacional de La Plata; 47 esq. 115 1900 La Plata Argentina
| |
Collapse
|
12
|
Sharma N, Kumar S, Maurya IK, Bhasin KK, Verma A, Wangoo N, Bhasin AKK, Mehta SK, Kumar S, Sharma RK. Synthesis, structural analysis, antimicrobial evaluation and synergistic studies of imidazo[1,2-a]pyrimidine chalcogenides. RSC Adv 2016. [DOI: 10.1039/c6ra24020h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis and structural analysis of novel imidazo[1,2-a]pyrimidine chalcogenides exhibiting effective antimicrobial activity and synergistic effects with known antibiotics have been reported.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Sanjeev Kumar
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Indresh K. Maurya
- Department of Microbial Biotechnology
- Panjab University
- Chandigarh
- India
| | - K. K. Bhasin
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Ajay Verma
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Nishima Wangoo
- Department of Applied Sciences
- University Institute of Engineering and Technology (UIET)
- Panjab University
- Chandigarh
- India
| | - Aman K. K. Bhasin
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - S. K. Mehta
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Sangit Kumar
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Rohit K. Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| |
Collapse
|