1
|
Kumarswamyreddy N, Nakagawa A, Endo H, Shimotohno A, Torii KU, Bode JW, Oishi S. Chemical synthesis of the EPF-family of plant cysteine-rich proteins and late-stage dye attachment by chemoselective amide-forming ligations. RSC Chem Biol 2022; 3:1422-1431. [PMID: 36544577 PMCID: PMC9709926 DOI: 10.1039/d2cb00155a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Chemical protein synthesis can provide well-defined modified proteins. Herein, we report the chemical synthesis of plant-derived cysteine-rich secretory proteins and late-stage derivatization of the synthetic proteins. The syntheses were achieved with distinct chemoselective amide bond forming reactions - EPF2 by native chemical ligation (NCL), epidermal patterning factor (EPF) 1 by the α-ketoacid-hydroxylamine (KAHA) ligation, and fluorescent functionalization of their folded variants by potassium acyltrifluoroborate (KAT) ligation. The chemically synthesized EPFs exhibit bioactivity on stomatal development in Arabidopsis thaliana. Comprehensive synthesis of EPF derivatives allowed us to identify suitable fluorescent variants for bioimaging of the subcellar localization of EPFs.
Collapse
Affiliation(s)
- Nandarapu Kumarswamyreddy
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan,Department of Chemistry, Indian Institute of Technology TirupatiTirupati517619Andhra PradeshIndia
| | - Ayami Nakagawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan
| | - Hitoshi Endo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan
| | - Akie Shimotohno
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan
| | - Keiko U. Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan,Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at AustinAustinTX 78712USA
| | - Jeffrey W. Bode
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan,Department of Chemistry and Applied Biosciences, ETH ZürichZürich 8093Switzerland
| | - Shunsuke Oishi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan
| |
Collapse
|
2
|
Abboud SA, Cisse EH, Doudeau M, Bénédetti H, Aucagne V. A straightforward methodology to overcome solubility challenges for N-terminal cysteinyl peptide segments used in native chemical ligation. Chem Sci 2021; 12:3194-3201. [PMID: 34164087 PMCID: PMC8179351 DOI: 10.1039/d0sc06001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
One of the main limitations encountered during the chemical synthesis of proteins through native chemical ligation (NCL) is the limited solubility of some of the peptide segments. The most commonly used solution to overcome this problem is to derivatize the segment with a temporary solubilizing tag. Conveniently, the tag can be introduced on the thioester segment in such a way that it is removed concomitantly with the NCL reaction. We herein describe a generalization of this approach to N-terminal cysteinyl segment counterparts, using a straightforward synthetic approach that can be easily automated from commercially available building blocks, and applied it to a well-known problematic target, SUMO-2.
Collapse
Affiliation(s)
- Skander A Abboud
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - El Hadji Cisse
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Michel Doudeau
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| |
Collapse
|
3
|
Mueller LK, Baumruck AC, Zhdanova H, Tietze AA. Challenges and Perspectives in Chemical Synthesis of Highly Hydrophobic Peptides. Front Bioeng Biotechnol 2020; 8:162. [PMID: 32195241 PMCID: PMC7064641 DOI: 10.3389/fbioe.2020.00162] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Solid phase peptide synthesis (SPPS) provides the possibility to chemically synthesize peptides and proteins. Applying the method on hydrophilic structures is usually without major drawbacks but faces extreme complications when it comes to "difficult sequences." These includes the vitally important, ubiquitously present and structurally demanding membrane proteins and their functional parts, such as ion channels, G-protein receptors, and other pore-forming structures. Standard synthetic and ligation protocols are not enough for a successful synthesis of these challenging sequences. In this review we highlight, summarize and evaluate the possibilities for synthetic production of "difficult sequences" by SPPS, native chemical ligation (NCL) and follow-up protocols.
Collapse
Affiliation(s)
- Lena K. Mueller
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| | - Andreas C. Baumruck
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| | - Hanna Zhdanova
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Alesia A. Tietze
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
5
|
Abstract
The present review offers an overview of nonclassical (e.g., with no pre- or in situ activation of a carboxylic acid partner) approaches for the construction of amide bonds. The review aims to comprehensively discuss relevant work, which was mainly done in the field in the last 20 years. Organization of the data follows a subdivision according to substrate classes: catalytic direct formation of amides from carboxylic and amines ( section 2 ); the use of carboxylic acid surrogates ( section 3 ); and the use of amine surrogates ( section 4 ). The ligation strategies (NCL, Staudinger, KAHA, KATs, etc.) that could involve both carboxylic acid and amine surrogates are treated separately in section 5 .
Collapse
Affiliation(s)
- Renata Marcia de Figueiredo
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Simon Suppo
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Marc Campagne
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| |
Collapse
|
6
|
Abstract
The aggregation of peptides/proteins is intimately related to a number of human diseases. More than 20 have been identified which aggregate into fibrils containing extensive β-sheet structures, and species generated in the aggregation processes (i.e., oligomers and fibrils) contribute to disease development. Amyloid-β peptide (designated Aβ), related to Alzheimer's disease (AD), is the representative example. The intensive aggregation property of Aβ also leads to difficulty in its synthesis. To improve the synthetic problem, we developed an O-acyl isopeptide of Aβ1-42, in which the N-acyl linkage (amide bond) of Ser(26) was replaced with an O-acyl linkage (ester bond) at the side chain. The O-acyl isopeptide demonstrated markedly higher water-solubility than that of Aβ1-42, while it quickly converted to intact monomer Aβ1-42 via an O-to-N acyl rearrangement under physiological conditions. Inhibition of the pathogenic aggregation of Aβ1-42 might be a therapeutic strategy for curing AD. We succeeded in the rational design and identification of a small molecule aggregation inhibitor based on a pharmacophore motif obtained from cyclo[-Lys-Leu-Val-Phe-Phe-]. Moreover, the inhibition of Aβ aggregation was achieved via oxygenation (i.e., incorporation of oxygen atoms to Aβ) using an artificial catalyst. We identified a selective, cell-compatible photo-oxygenation catalyst of Aβ, a flavin catalyst attached to an Aβ-binding peptide, which markedly decreased the aggregation potency and neurotoxicity of Aβ.
Collapse
Affiliation(s)
- Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
7
|
Hojo H. A strategy for the synthesis of hydrophobic proteins and glycoproteins. Org Biomol Chem 2016; 14:6368-74. [DOI: 10.1039/c6ob00827e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrophobic glycoprotein was successfully synthesized by the reverse polarity protection strategy combined with the O-acylisopeptide method, which will be useful for the synthesis of various hydrophobic (glyco)proteins.
Collapse
Affiliation(s)
- Hironobu Hojo
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| |
Collapse
|
8
|
Desmet R, Pauzuolis M, Boll E, Drobecq H, Raibaut L, Melnyk O. Synthesis of Unprotected Linear or Cyclic O-Acyl Isopeptides in Water Using Bis(2-sulfanylethyl)amido Peptide Ligation. Org Lett 2015; 17:3354-7. [PMID: 26075704 DOI: 10.1021/acs.orglett.5b01614] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SEA ligation proceeds chemoselectively at pH 3, i.e., at a pH where the O-acyl isopeptides are protected by protonation. This property was used for synthesizing unprotected O-acyl isopeptides in water, starting from peptide segments which are easily accessible by the Fmoc SPPS.
Collapse
Affiliation(s)
- Rémi Desmet
- UMR CNRS 8161, Université Lille, Pasteur Institute of Lille 59021 Lille, France
| | - Mindaugas Pauzuolis
- UMR CNRS 8161, Université Lille, Pasteur Institute of Lille 59021 Lille, France
| | - Emmanuelle Boll
- UMR CNRS 8161, Université Lille, Pasteur Institute of Lille 59021 Lille, France
| | - Hervé Drobecq
- UMR CNRS 8161, Université Lille, Pasteur Institute of Lille 59021 Lille, France
| | - Laurent Raibaut
- UMR CNRS 8161, Université Lille, Pasteur Institute of Lille 59021 Lille, France
| | - Oleg Melnyk
- UMR CNRS 8161, Université Lille, Pasteur Institute of Lille 59021 Lille, France
| |
Collapse
|
9
|
Chen M, Heimer P, Imhof D. Synthetic strategies for polypeptides and proteins by chemical ligation. Amino Acids 2015; 47:1283-99. [DOI: 10.1007/s00726-015-1982-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/02/2015] [Indexed: 11/30/2022]
|
10
|
Yoshiya T, Uemura T, Maruno T, Kubo S, Kiso Y, Sohma Y, Kobayashi Y, Yoshizawa-Kumagaye K, Nishiuchi Y. O
-Acyl isopeptide method: development of an O
-acyl isodipeptide unit for Boc SPPS
and its application to the synthesis of Aβ
1-42 isopeptide. J Pept Sci 2014; 20:669-74. [DOI: 10.1002/psc.2662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Takahiro Maruno
- Graduate School of Engineering; Osaka University; Osaka 565-0871 Japan
| | | | - Yoshiaki Kiso
- Laboratory of Peptide Science; Nagahama Institute of Bio-Science and Technology; Shiga 526-0829 Japan
| | - Youhei Sohma
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; Tokyo 113-0033 Japan
| | - Yuji Kobayashi
- Graduate School of Engineering; Osaka University; Osaka 565-0871 Japan
| | | | - Yuji Nishiuchi
- Peptide Institute, Inc.; Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Osaka 560-0043 Japan
| |
Collapse
|
11
|
Kawashima H, Kuruma T, Yamashita M, Sohma Y, Akaji K. Synthesis of an O-acyl isopeptide by using native chemical ligation in an aqueous solvent system. J Pept Sci 2014; 20:361-5. [PMID: 24596115 DOI: 10.1002/psc.2622] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 11/07/2022]
Abstract
O-Acyl isopeptides, in which the N-acyl linkage on the hydroxyamino acid residue (e.g. Ser and Thr) is replaced by an O-acyl linkage, generally suppress unfavorable aggregation properties derived from the corresponding parent peptides. Here, we report the synthesis of an O-acyl isopeptide of 34-mer pyroGlu-ADan (2), a component of amyloid deposits in hereditary familial Danish dementia, by using native chemical ligation. Native chemical ligation of pyroGlu(1) -ADan(1-21)-SCH2 CH2 SO3 (-) Na(+) (3) and Cys(22) -O-acyl isopeptide (4), in which the amino group of the Ser(29) residue at the isopeptide moiety was protected by an allyloxycarbonyl group, proceeded well in an aqueous solvent to yield a ligated O-acyl isopeptide (5). Subsequent disulfide bond formation and deprotection of the allyloxycarbonyl group followed by HPLC purification gave 2 with a reasonable overall yield. 2 was converted to the parent peptide 1 via an O-to-N acyl migration reaction. The sequential method, namely (i) native chemical ligation of the O-acyl isopeptide, (ii) HPLC purification as the O-acyl isopeptide form, and (iii) O-to-N acyl migration into the desired polypeptide, would be helpful to solve problems with HPLC purification of hydrophobic polypeptides in the process of chemical protein synthesis.
Collapse
Affiliation(s)
- Hiroyuki Kawashima
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan; Department of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-412, Japan
| | | | | | | | | |
Collapse
|
12
|
Abstract
O-Acyl isopeptides, in which the N-acyl linkage on the hydroxyamino acid residue (e.g., Ser and Thr) is replaced with an O-acyl linkage, generally possess superior water-solubility to their corresponding native peptides, as well as other distinct physicochemical properties. In addition, O-acyl isopeptides can be rapidly converted into their corresponding native peptide under neutral aqueous conditions through an O-to-N acyl migration. By exploiting these characteristics, researchers have applied the O-acyl isopeptide method to various peptide-synthesis fields, such as the synthesis of aggregative peptides and convergent peptide synthesis. This O-acyl-isopeptide approach also serves as a means to control the biological function of the peptide in question. Herein, we report the synthesis of O-acyl isopeptides and some of their applications.
Collapse
Affiliation(s)
- Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
13
|
Monbaliu JCM, Katritzky AR. Recent trends in Cys- and Ser/Thr-based synthetic strategies for the elaboration of peptide constructs. Chem Commun (Camb) 2012; 48:11601-22. [DOI: 10.1039/c2cc34434c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|