Shakour N, Mohadeszadeh M, Iranshahi M. Biomimetic Synthesis of Biologically Active Natural Products: An Updated Review.
Mini Rev Med Chem 2024;
24:3-25. [PMID:
37073153 DOI:
10.2174/1389557523666230417083143]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 11/22/2022] [Indexed: 04/20/2023]
Abstract
BACKGROUND
Natural products have optical activities with unusual structural characteristics or specific stereoselectivity, mostly including spiro-ring systems or quaternary carbon atoms. Expensive and time-consuming methods for natural product purification, especially natural products with bioactive properties, have encouraged chemists to synthesize those compounds in laboratories. Due to their significant role in drug discovery and chemical biology, natural products have become a major area of synthetic organic chemistry. Most medicinal ingredients available today are healing agents derived from natural resources, such as plants, herbs, and other natural products.
METHODS
Materials were compiled using the three databases of ScienceDirect, PubMed, and Google Scholar. For this study, only English-language publications have been evaluated based on their titles, abstracts, and full texts.
RESULTS
Developing bioactive compounds and drugs from natural products has remained challenging despite recent advances. A major challenge is not whether a target can be synthesized but how to do so efficiently and practically. Nature has the ability to create molecules in a delicate but effective manner. A convenient method is to imitate the biogenesis of natural products from microbes, plants, or animals for synthesizing natural products. Inspired by the mechanisms occurring in the nature, synthetic strategies facilitate laboratory synthesis of natural compounds with complicated structures.
CONCLUSION
In this review, we have elaborated on the recent syntheses of natural products conducted since 2008 and provided an updated outline of this area of research (Covering 2008-2022) using bioinspired methods, including Diels-Alder dimerization, photocycloaddition, cyclization, and oxidative and radical reactions, which will provide an easy access to precursors for biomimetic reactions. This study presents a unified method for synthesizing bioactive skeletal products.
Collapse