1
|
Udvardy A, Joó F, Kathó Á. Synthesis and catalytic applications of Ru(II)-phosphaurotropine complexes with the use of simple water-soluble Ru(II)-precursors. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
2
|
Alami O, Laurent R, Majoral JP, El Brahmi N, El Kazzouli S, Caminade AM. Copper complexes of phosphorus dendrimers and their properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Phosphorus Dendrimers as Nanotools against Cancers. Molecules 2020; 25:molecules25153333. [PMID: 32708025 PMCID: PMC7435762 DOI: 10.3390/molecules25153333] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022] Open
Abstract
This review concerns the use of dendrimers, especially of phosphorhydrazone dendrimers, against cancers. After the introduction, the review is organized in three main topics, depending on the role played by the phosphorus dendrimers against cancers: (i) as drugs by themselves; (ii) as carriers of drugs; and (iii) as indirect inducer of cancerous cell death. In the first part, two main types of phosphorus dendrimers are considered: those functionalized on the surface by diverse organic derivatives, including known drugs, and those functionalized by diverse metal complexes. The second part will display the role of dendrimers as carriers of anticancer “drugs”, which can be either small molecules or anticancer siRNAs, or the combination of both. In the third part are gathered a few examples of phosphorhydrazone dendrimers that are not cytotoxic by themselves, but which under certain circumstances induce a cytotoxic effect on cancerous cells. These examples include a positive influence on the human immune system and the combination of bioimaging with photodynamic therapy properties.
Collapse
|
4
|
|
5
|
Majoral J, Caminade A. Phosphorhydrazones as Useful Building Blocks for Special Architectures: Macrocycles and Dendrimers. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jean‐Pierre Majoral
- Laboratoire de Chimie de Coordination CNRS 205, route de Narbonne 31077 Toulouse Cedex 04 France
- LCC‐CNRS Université de Toulouse CNRS Toulouse France
| | - Anne‐Marie Caminade
- Laboratoire de Chimie de Coordination CNRS 205, route de Narbonne 31077 Toulouse Cedex 04 France
- LCC‐CNRS Université de Toulouse CNRS Toulouse France
| |
Collapse
|
6
|
Guerriero A, Peruzzini M, Gonsalvi L. Coordination chemistry of 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane (PTA) and derivatives. Part III. Variations on a theme: Novel architectures, materials and applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Caminade AM, Ouali A, Laurent R, Turrin CO, Majoral JP. Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.06.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Caminade AM, Ouali A, Laurent R, Majoral JP. Phosphorus dendrimers as supports of transition metal catalysts. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2014.10.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Goren K, Karabline-Kuks J, Shiloni Y, Barak-Kulbak E, Miller SJ, Portnoy M. Multivalency as a key factor for high activity of selective supported organocatalysts for the Baylis-Hillman reaction. Chemistry 2015; 21:1191-7. [PMID: 25376519 DOI: 10.1002/chem.201404560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 11/05/2022]
Abstract
The polystyrene-supported N-alkylimidazole-based dendritic catalysts for the Baylis-Hillman reaction exhibit one of the strongest beneficial effects of multivalent architecture ever reported for an organocatalyst. The yields in the model reaction of methyl vinyl ketone with p-nitrobenzaldehyde are more than tripled when a non-dendritic catalyst is replaced by a second- or third-generation analogue. Moreover, the reaction of the less active substrates will not occur with the non-dendritic catalyst and will proceed to a significant extent only with the analogous catalysts of higher generations. A substantial additional enhancement of the reaction yield could be achieved by increasing the content of water in the reaction solvent. The plausible cause of the dendritic effect is the assistance of the second, nearby imidazole moiety in the presumably rate-determining proton transfer in the intermediate adduct, after the first imidazole unit induced the formation of the new carbon-carbon bond.
Collapse
Affiliation(s)
- Kerem Goren
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978 (Israel); Current Address: Teva Pharmaceutical Industries Ltd, P.O.B. 3190, 2 Denmark Street, Petah Tikva (Israel)
| | | | | | | | | | | |
Collapse
|
10
|
Ishida T, Aimoto J, Hamasaki A, Ohashi H, Honma T, Yokoyama T, Sakata K, Okumura M, Tokunaga M. Formation of Gold Clusters on La–Ni Mixed Oxides and Its Catalytic Performance for Isomerization of Allylic Alcohols to Saturated Aldehydes. CHEM LETT 2014. [DOI: 10.1246/cl.140369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Tamao Ishida
- Department of Chemistry, Graduate School of Sciences, Kyushu University
- Department of Applied Chemistry, School of Urban Environmental Sciences, Tokyo Metropolitan University
| | - Jun Aimoto
- Department of Chemistry, Graduate School of Sciences, Kyushu University
| | - Akiyuki Hamasaki
- Department of Chemistry, Graduate School of Sciences, Kyushu University
| | | | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8)
| | - Takushi Yokoyama
- Department of Chemistry, Graduate School of Sciences, Kyushu University
| | - Kohei Sakata
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Mitsutaka Okumura
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Makoto Tokunaga
- Department of Chemistry, Graduate School of Sciences, Kyushu University
- International Research Center for Molecular Systems (IRCMS), Kyushu University
| |
Collapse
|
11
|
Crochet P, Cadierno V. Arene-ruthenium(ii) complexes with hydrophilic P-donor ligands: versatile catalysts in aqueous media. Dalton Trans 2014; 43:12447-62. [DOI: 10.1039/c4dt01494d] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Caminade AM, Laurent R, Ouali A, Majoral JP. Poly(phosphorhydrazone) metallodendrimers. A review. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
|
14
|
Caminade AM, Majoral JP. Positively charged phosphorus dendrimers. An overview of their properties. NEW J CHEM 2013. [DOI: 10.1039/c3nj00583f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Catalytic isomerization of allylic alcohols promoted by complexes [RuCl2(η6-arene)(PTA-Me)] under homogeneous conditions and supported on Montmorillonite K-10. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcata.2012.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Caminade AM, Laurent R, Zablocka M, Majoral JP. Organophosphorus chemistry for the synthesis of dendrimers. Molecules 2012; 17:13605-21. [PMID: 23159922 PMCID: PMC6268704 DOI: 10.3390/molecules171113605] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 11/21/2022] Open
Abstract
Dendrimers are multifunctional, hyperbranched and perfectly defined macromolecules, synthesized layer after layer in an iterative manner. Besides the nature of the terminal groups responsible for most of the properties, the nature of the internal structure, and more precisely of the branching points, is also of crucial importance. For more than 15 years, we have demonstrated that the presence of phosphorus atom(s) at each branching point of the dendrimeric structure is particularly important and highly valuable for three main reasons: (i) the versatility of phosphorus chemistry that allows diversified organochemistry for the synthesis of dendrimers; (ii) the use of 31P-NMR, which is a highly valuable tool for the characterization of dendrimers; (iii) some properties (in the fields of catalysis, materials, and especially biology), that are directly connected to the nature of the internal structure and of the branching points. This review will give an overview of the methods of synthesis of phosphorus-containing dendrimers, as well on the ways to graft phosphorus derivatives as terminal groups, with emphasis on the various roles played by the chemistry of phosphorus.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP44099, F-31077 Toulouse Cedex 4, France; (R.L.); (J.-P.M.)
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Régis Laurent
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP44099, F-31077 Toulouse Cedex 4, France; (R.L.); (J.-P.M.)
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Maria Zablocka
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP44099, F-31077 Toulouse Cedex 4, France; (R.L.); (J.-P.M.)
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
- Centre of Molecular and Macromolecular Studies, The Polish Academy of Sciences, Sienkiewicza 112, 90363 Lodz, Poland;
| | - Jean-Pierre Majoral
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP44099, F-31077 Toulouse Cedex 4, France; (R.L.); (J.-P.M.)
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| |
Collapse
|