1
|
Qadir T, Kanth SA, Aasif M, Fadul AN, Yatoo GN, Jangid K, Mir MA, Shah WA, Sharma PK. Design, synthesis, and unraveling the antibacterial and antibiofilm potential of 2-azidobenzothiazoles: insights from a comprehensive in vitro study. Front Chem 2023; 11:1264747. [PMID: 37744062 PMCID: PMC10513370 DOI: 10.3389/fchem.2023.1264747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
The present study reports the synthesis of 2-azidobenzothiazoles from substituted 2-aminobenzothiazoles using sodium nitrite and sodium azide under mild conditions. All the synthesized compounds were examined for their antibacterial activity against Gram (+) bacteria, Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 51299), Bacillus cereus (ATCC 10876) and Gram (-) bacteria, Escherichia coli (ATCC 10536), Pseudomonas aeruginosa (ATCC 10145), Klebsiella pneumonia (ATCC BAA-2146)and clinical isolates of Gram (+) Methicillin Resistant S. aureus (MRSA) and Multi Drug Resistant E. coli. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values by broth dilution method revealed that compound 2d exhibited significant antibacterial potential against E. faecalis and S. aureus with MIC of 8 μg/mL, while other synthesized compounds had only moderate effects against all the tested species. The compound significantly inhibited the biofilm formation of the bacterial strains below its MIC. The selective cytotoxicity of Compound 2d towards bacterial cells was evidenced on extended exposure of Human Embryonic Kidney-293 cell line to higher concentrations of the compound. Hence, the present study confirmed that compound 2d can be a potential drug candidate for future development as an antibacterial drug.
Collapse
Affiliation(s)
- Tanzeela Qadir
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| | - Saadat A. Kanth
- Centre of Research for Development and P.G Programme in Microbiology, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mohammad Aasif
- Department of Chemistry, National Institute of Technology, Srinagar, Jammu and Kashmir, India
| | - Abdalla N. Fadul
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Gulam N. Yatoo
- Department of Chemistry, National Institute of Technology, Srinagar, Jammu and Kashmir, India
| | - Kailash Jangid
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Mushtaq A. Mir
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Wajahat A. Shah
- Laboratory of Natural Product and Designing Organic Synthesis, Department of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Praveen K. Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
2
|
Cui J, Tao Z, Wu J, Ma S, Yang Y, Zhang J. A Stable Triazole-Based Covalent Gel for Long-Term Cycling Zn Anode in Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304640. [PMID: 37632314 DOI: 10.1002/smll.202304640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Indexed: 08/27/2023]
Abstract
In this work, a functional covalent gel material is developed to resolve the severe dendritic growth and hydrogen evolution reaction toward Zn/electrolyte interface in aqueous zinc-ion batteries (ZIBs). A covalent gel layer with superior durability forms homogeneously on the surface of Zn foil. The covalent gel with triazole functional groups can uniformize the transport of Zn2+ due to the interactions between Zn2+ ions and the triazole groups in the covalent gel. As a consequence, the symmetrical battery with triazole covalent gel maintains stable Zn plating/stripping for over 3000 h at 1 mA cm-2 and 1 mAh cm-2 , and the full cell combined with a V2 O5 cathode operates steadily and continuously for at least 1800 cycles at 5 A g-1 with a capacity retention rate of 67.0%. This work provides a train of thought to develop stable covalent gels for the protection of zinc anode toward high-performance ZIBs.
Collapse
Affiliation(s)
- Jiawei Cui
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zengren Tao
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jinyi Wu
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Shasha Ma
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yangyi Yang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
3
|
Ha HJ, Kim B, Jo S, Kim S, Park J, Cho CW. Synthesis of Tricyclic Tetrazoles by Cascade Diazotization/Intramolecular Radical C-H Heteroarylation of Arenes. J Org Chem 2023. [PMID: 36787425 DOI: 10.1021/acs.joc.2c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A cascade diazotization/intramolecular radical C-H heteroarylation of 1-benzyloxy-5-aminotetrazoles and 1-phenethyl-5-aminotetrazoles as substrates using sodium nitrite and acetic acid without any heating, catalysis, irradiation, or electrolysis is reported. This one-pot reaction afforded the desired tricyclic tetrazole products in good yields (up to 94%) without isolation of the diazonium salt intermediate under mild reaction conditions.
Collapse
Affiliation(s)
- Heun-Jong Ha
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bora Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Subin Jo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sugyeong Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Junho Park
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chang-Woo Cho
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Avoni A, Vemireddy S, Sambyal S, Shafi S, Khan I, Khan A, Sampath Kumar HM. Synthesis and immunopharmacological evaluation of novel TLR7 agonistic triazole tethered imidazoquinolines. RSC Adv 2023; 13:1066-1077. [PMID: 36686935 PMCID: PMC9811562 DOI: 10.1039/d2ra06395f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/10/2022] [Indexed: 01/06/2023] Open
Abstract
Toll-like receptors-7 and -8 are expressed abundantly on antigen-presenting cells, and their agonists make potential adjuvant candidates for the development of new efficacious vaccines. In view of the importance of new efficacious imidazoquinoline based adjuvants, herein we have synthesized a focused library of a new class of imidazoquinolines retaining the N-isobutyl substitution of an imidazole moiety as in imiquimod and introduced a 1,2,3-triazolyl moiety upon alkyl substitution at the imidazolemethyne carbon employing triazolyl click chemistry. All the novel analogues were characterized using various spectroscopic techniques and the target specificity of these molecules was determined using HEK TLR7/8 transfected cell lines. TLR7/8 activity and also the molecular docking results correlated primarily to the position of the substituent for aromatic groups and also to the chain length in alkyl substitutions. The immunomodulatory properties of these analogues were evaluated using murine DC activation and also with hPBMC activation markers, cytokines which revealed that these analogues after modification were able to target the TLR7 receptors and also had a pro-inflammatory immune response.
Collapse
Affiliation(s)
- Ayyappa Avoni
- Vaccine Immunology Laboratory, OSPC Division, CSIR-Indian Institute of Chemical TechnologyHyderabad 500007India+91-40-27160387+914027191824,Academy of Scientific and Innovative Research (AcSIR)GhaziabadUttar Pradesh 201 002India
| | - Sravanthi Vemireddy
- Vaccine Immunology Laboratory, OSPC Division, CSIR-Indian Institute of Chemical TechnologyHyderabad 500007India+91-40-27160387+914027191824
| | - Shainy Sambyal
- Vaccine Immunology Laboratory, OSPC Division, CSIR-Indian Institute of Chemical TechnologyHyderabad 500007India+91-40-27160387+914027191824
| | - Syed Shafi
- Department of Chemistry, Hamdard UniversityHamdard NagarNew DelhiDelhi 110062India
| | - Imran Khan
- Department of Chemistry, Hamdard UniversityHamdard NagarNew DelhiDelhi 110062India
| | - Aarif Khan
- Department of Chemistry, Hamdard UniversityHamdard NagarNew DelhiDelhi 110062India
| | - Halmuthur M. Sampath Kumar
- Vaccine Immunology Laboratory, OSPC Division, CSIR-Indian Institute of Chemical TechnologyHyderabad 500007India+91-40-27160387+914027191824,Academy of Scientific and Innovative Research (AcSIR)GhaziabadUttar Pradesh 201 002India
| |
Collapse
|
5
|
Wu J, Ma S, Cui J, Yang Z, Zhang J. Nitrogen-Rich Porous Organic Polymers with Supported Ag Nanoparticles for Efficient CO 2 Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3088. [PMID: 36144877 PMCID: PMC9501012 DOI: 10.3390/nano12183088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
As CO2 emissions increase and the global climate deteriorates, converting CO2 into valuable chemicals has become a topic of wide concern. The development of multifunctional catalysts for efficient CO2 conversion remains a major challenge. Herein, two porous organic polymers (NPOPs) functionalized with covalent triazine and triazole N-heterocycles are synthesized through the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The NPOPs have an abundant microporous content and high specific surface area, which confer them excellent CO2 affinities with a CO2 adsorption capacity of 84.0 mg g-1 and 63.7 mg g-1, respectively, at 273 K and 0.1 MPa. After wet impregnation and in situ reductions, Ag nanoparticles were supported in the NPOPs to obtain Ag@NPOPs with high dispersion and small particle size. The Ag@NPOPs were applied to high-value conversion reactions of CO2 with propargylic amines and terminal alkynes under mild reaction conditions. The carboxylative cyclization transformation of propargylic amine into 2-oxazolidinone and the carboxylation transformation of terminal alkynes into phenylpropiolic acid had the highest TOF values of 1125.1 and 90.9 h-1, respectively. The Ag@NPOP-1 was recycled and used five times without any significant decrease in catalytic activity, showing excellent catalytic stability and durability.
Collapse
Affiliation(s)
- Jinyi Wu
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shasha Ma
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiawei Cui
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zujin Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Batalha PN, Mocanu T, Calancea S, Vaz MG, Andruh M. Zinc(II) and copper(II) complexes constructed from new bis(1H-1,2,3-triazole-4-carboxylate)-based ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Hagiwara H, Konomura S. Thermosalience coupled to abrupt spin crossover with dynamic ligand motion in an iron(II) molecular crystal. CrystEngComm 2022. [DOI: 10.1039/d2ce00501h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report an iron(II) molecular crystal that show thermosalient effect (crystal jumping) coupled to cooperative high-spin (HS) to low-spin (LS) spin crossover (SCO). The new iron(II) compound [Fe(LPh,Et)2(NCS)2] (LPh,Et...
Collapse
|
8
|
Qi Z, Li SS, Li L, Qin Q, Yang LM, Liang YK, Kang Y, Zhang XZ, Ma AJ, Peng JB. Palladium Catalyzed Cascade Azidation/Carbonylation of Aryl Halides with Sodium Azide for the Synthesis of Amides. Chem Asian J 2021; 16:503-506. [PMID: 33470007 DOI: 10.1002/asia.202001463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Amide synthesis is one of the most important transformations in organic chemistry due to their ubiquitous presence in our daily life. In this communication, a palladium catalyzed cascade azidation/carbonylation of aryl halides for the synthesis of amides was developed. Both iodo- and bromobenzene derivatives were transformed to the corresponding amides using PdCl2 /xantphos as the catalyst system and sodium azide as the nitrogen-source. The reaction proceeds via a cascade azidation/carbonylation process. A range of alkyl and halogen substituted amides were prepared in moderate to good yields.
Collapse
Affiliation(s)
- Zhuang Qi
- School of Biotechnology and Health Sciences, Wuyi University, 529020, Jiangmen, Guangdong, P. R. China
| | - Shan-Shan Li
- School of Biotechnology and Health Sciences, Wuyi University, 529020, Jiangmen, Guangdong, P. R. China
| | - Lin Li
- School of Biotechnology and Health Sciences, Wuyi University, 529020, Jiangmen, Guangdong, P. R. China
| | - Qi Qin
- School of Biotechnology and Health Sciences, Wuyi University, 529020, Jiangmen, Guangdong, P. R. China
| | - Li-Miao Yang
- School of Biotechnology and Health Sciences, Wuyi University, 529020, Jiangmen, Guangdong, P. R. China
| | - Ying-Kang Liang
- School of Biotechnology and Health Sciences, Wuyi University, 529020, Jiangmen, Guangdong, P. R. China
| | - Yun Kang
- School of Biotechnology and Health Sciences, Wuyi University, 529020, Jiangmen, Guangdong, P. R. China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, 529020, Jiangmen, Guangdong, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, 529020, Jiangmen, Guangdong, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, 529020, Jiangmen, Guangdong, P. R. China
| |
Collapse
|
9
|
Heras Martinez HM, Chavez Flores D, Hillesheim PC, Patil S, Bugarin A. Crystal structure and spectroscopic properties of ( E)-1,3-dimethyl-2-[3-(4-nitro-phen-yl)triaz-2-enyl-idene]-2,3-di-hydro-1 H-imidazole. Acta Crystallogr E Crystallogr Commun 2021; 77:130-133. [PMID: 33614140 PMCID: PMC7869543 DOI: 10.1107/s2056989021000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 11/11/2022]
Abstract
The title compound (E)-1,3-dimethyl-2-[3-(4-nitro-phen-yl)triaz-2-enyl-idene]-2,3-di-hydro-1H-imidazole, C11H12N6O2, has monoclinic (C2/c) symmetry at 100 K. This triazene derivative was synthesized by the coupling reaction of 1,3-di-methyl-imidazolium iodide with 1-azido-4-nitro benzene in the presence of sodium hydride (60% in mineral oil) and characterized by 1H NMR, 13C NMR, IR, mass spectrometry, and single-crystal X-ray diffraction. The mol-ecule consists of six-membered and five-membered rings, which are connected by a triazene moiety (-N=N-N-). In the solid-state, the mol-ecule is found to be planar due to conjugation throughout the mol-ecule. The extended structure shows two layers of mol-ecules, which present weak inter-molecular inter-actions that facilitate the stacked arrangement of the mol-ecules forming the extended structure. Furthermore, there are several weak pseudo-cyclical inter-actions between the nitro oxygen atoms and symmetry-adjacent H atoms, which help to arrange the mol-ecules.
Collapse
Affiliation(s)
- Hector Mario Heras Martinez
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU, Boulevard South, Fort Myers, FL 33965, USA
| | - David Chavez Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Nuevo Campus Universitario, Circuito Universitario, Chihuahua, Chih., CP 31125, Mexico
| | - Patrick C. Hillesheim
- Department of Chemistry and Physics, Ave Maria University, 5050 Ave Maria Blvd, Ave Maria, FL 34142, USA
| | - Siddappa Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Alejandro Bugarin
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU, Boulevard South, Fort Myers, FL 33965, USA
| |
Collapse
|
10
|
Mehra S, Nisar S, Chauhan S, Singh G, Singh V, Rattan S. A dual stimuli responsive natural polymer based superabsorbent hydrogel engineered through a novel cross-linker. Polym Chem 2021. [DOI: 10.1039/d0py01729a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An intelligent dual stimuli (pH and thermo) responsive, highly porous grafted SPI hydrogel.
Collapse
Affiliation(s)
- Saloni Mehra
- Amity Institute of Applied Sciences
- Amity University Uttar Pradesh
- Noida 201303
- India
- Jubilant Biosys Limited
| | - Safiya Nisar
- Amity Institute of Applied Sciences
- Amity University Uttar Pradesh
- Noida 201303
- India
| | - Sonal Chauhan
- Amity Institute of Applied Sciences
- Amity University Uttar Pradesh
- Noida 201303
- India
| | - Gurmeet Singh
- Light Stock Processing Division
- CSIR-Indian Institute of Petroleum
- Dehradun
- India
| | - Virender Singh
- Department of Chemistry
- Central University of Punjab
- Bathinda
- India
| | - Sunita Rattan
- Amity Institute of Applied Sciences
- Amity University Uttar Pradesh
- Noida 201303
- India
| |
Collapse
|
11
|
Affiliation(s)
- Sushobhan Mukhopadhyay
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Sector 10, Jankipuram Extension; Sitapur Road Lucknow 226031 Uttar Pradesh India
| | - Sanjay Batra
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Sector 10, Jankipuram Extension; Sitapur Road Lucknow 226031 Uttar Pradesh India
- Academy of Scientific and Innovative Research; CSIR - Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19; Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| |
Collapse
|
12
|
He ZJ, Wei MH, Zhang XL, Chen JM, Sheng SR. One-pot sequential diprop-2-ynylation and cycloaddition: An efficient synthesis of novel N,N-bis(1,2,3-triazol-4-yl) methylarylamines starting from primary amines. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1643482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhu-Jun He
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, People’s Republic of China
| | - Mei-Hong Wei
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, People’s Republic of China
| | - Xiao-Lan Zhang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, People’s Republic of China
- College of Chemistry and Chemical Engineering, Shangrao Normal University, Shangrao, People’s Republic of China
| | - Jun-Min Chen
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, People’s Republic of China
| | - Shou-Ri Sheng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, People’s Republic of China
| |
Collapse
|
13
|
Iron(II) Spin Crossover Complex with the 1,2,3-Triazole-Containing Linear Pentadentate Schiff-Base Ligand and the MeCN Monodentate Ligand. CRYSTALS 2019. [DOI: 10.3390/cryst9060276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A mononuclear iron(II) complex bearing the linear pentadentate N5 Schiff-base ligand containing two 1,2,3-triazole moieties and the MeCN monodentate ligand, [FeIIMeCN(L3-Me-3Ph)](BPh4)2·MeCN·H2O (1), have been prepared (L3-Me-3Ph = bis(N,N′-1-Phenyl-1H-1,2,3-triazol-4-yl-methylideneaminopropyl)methylamine). Variable-temperature magnetic susceptibility measurements revealed an incomplete one-step spin crossover (SCO) from the room-temperature low-spin (LS, S = 0) state to a mixture of the LS and high-spin (HS, S = 2) species at the higher temperature of around 400 K upon first heating, which is irreversible on the consecutive cooling mode. The magnetic modulation at around 400 K was induced by the crystal-to-amorphous transformation accompanied by the loss of lattice MeCN solvent, which was evident from powder X-ray diffraction (PXRD) studies and themogravimetry. The single-crystal X-ray diffraction studies showed that the complex is in the LS state (S = 0) between 296 and 387 K. In the crystal lattice, the complex-cations and B(1)Ph4− ions are alternately connected by intermolecular CH···π interactions between the methyl group of the MeCN ligand and phenyl groups of B(1)Ph4− ions, forming a 1D chain structure. The 1D chains are further connected by P4AE (parallel fourfold aryl embrace) interactions between two neighboring complex-cations, constructing a 2D extended structure. B(2)Ph4− ions and MeCN lattice solvents exist in the spaces of the 2D layer. DFT calculations verified that the 1,2,3-triazole-containing ligand L3-Me-3Ph gives a stronger ligand field around the octahedral coordination environment of the iron(II) ion than the analogous imidazole-containing ligand H2L2Me (= bis(N,N′-2-methylimidazol-4-yl-methylideneaminopropyl)methylamine) of the known compound [FeIIMeCN(H2L2Me)](BPh4)1.5·Cl0.5·0.5MeCN (2) reported by Matsumoto et al. (Nishi, K.; Fujinami, T.; Kitabayashi, A.; Matsumoto, N. Tetrameric spin crossover iron(II) complex constructed by imidazole⋯chloride hydrogen bonds. Inorg. Chem. Commun. 2011, 14, 1073–1076), resulting in the much higher spin transition temperature of 1 than that of 2.
Collapse
|
14
|
Tang Z, Yang J, Li G, Hu Y. Synthesis of sulfur-rich nitrogen dots from a single source precursor and its application in dual-mode sensing. Talanta 2019; 195:550-557. [DOI: 10.1016/j.talanta.2018.11.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 01/22/2023]
|
15
|
High-temperature Spin Crossover of a Solvent-Free Iron(II) Complex with the Linear Hexadentate Ligand [Fe(L2-3-2Ph)](AsF6)2 (L2-3-2Ph = bis[N-(1-Phenyl-1H-1,2,3-triazol-4-yl)methylidene-2-aminoethyl]-1,3- propanediamine). MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel mononuclear iron(II) complex with a linear hexadentate N6 ligand, containing two 1,2,3-triazole moieties, [Fe(L2-3-2Ph)](AsF6)2 (1), was synthesized (L2-3-2Ph = bis[N-(1-Phenyl-1H-1,2,3-triazol-4-yl)methylidene-2-aminoethyl]-1,3-propanediamine). Variable-temperature magnetic susceptibility measurements revealed a gradual one-step spin crossover (SCO) between the high-spin (HS, S = 2) and low-spin (LS, S = 0) states above room temperature (T1/2 = 468 K). The spin transition was further confirmed by differential scanning calorimetry (DSC). A single-crystal X-ray diffraction study showed that the complex was in the LS state (S = 0) at room temperature (296 K). In the crystal lattice, a three-dimensional (3D) supramolecular network was formed by intermolecular CH⋯ and – interactions of neighboring complex cations [Fe(L2-3-2Ph)]2+. AsF6− ions were located interstitially in the 3D network of complex cations, with no solvent-accessible voids. The crystal structure at 448 K (mixture of HS and LS species) was also successfully determined thanks to the thermal stability of the solvent-free crystal.
Collapse
|
16
|
Kashif M, Moreno-Herrera A, Villalobos-Rocha JC, Nogueda-Torres B, Pérez-Villanueva J, Rodríguez-Villar K, Medina-Franco JL, de Andrade P, Carvalho I, Rivera G. Benzoic Acid Derivatives with Trypanocidal Activity: Enzymatic Analysis and Molecular Docking Studies toward Trans-Sialidase. Molecules 2017; 22:E1863. [PMID: 29084172 PMCID: PMC6150317 DOI: 10.3390/molecules22111863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/21/2017] [Accepted: 10/24/2017] [Indexed: 10/26/2022] Open
Abstract
Chagas, or American trypanosomiasis, remains an important public health problem in developing countries. In the last decade, trans-sialidase has become a pharmacological target for new anti-Chagas drugs. In this work, the aims were to design and find a new series of benzoic acid derivatives as trans-sialidase (TS) inhibitors and anti-trypanosomal agents. Three compounds (14, 18, and 19) sharing a para-aminobenzoic acid moiety showed more potent trypanocidal activity than the commercially available drugs nifurtimox and benznidazole in both strains: the lysis concentration of 50% of the population (LC50) was <0.15 µM on the NINOA strain, and LC50 < 0.22 µM on the INC-5 strain. Additionally, compound 18 showed a moderate inhibition (47%) on the trans-sialidase enzyme and a binding model similar to DANA (pattern A).
Collapse
Affiliation(s)
- Muhammad Kashif
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Reynosa 88710, Mexico.
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Reynosa 88710, Mexico.
| | - Juan Carlos Villalobos-Rocha
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Jaime Pérez-Villanueva
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, UAM-X, Ciudad de México 04960, Mexico.
| | - Karen Rodríguez-Villar
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, UAM-X, Ciudad de México 04960, Mexico.
| | - José Lius Medina-Franco
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico.
| | - Peterson de Andrade
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, Ribeirão Preto SP 14040-930, Brazil.
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, Ribeirão Preto SP 14040-930, Brazil.
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Reynosa 88710, Mexico.
| |
Collapse
|
17
|
Joshi SM, de Cózar A, Gómez-Vallejo V, Koziorowski J, Llop J, Cossío FP. Synthesis of radiolabelled aryl azides from diazonium salts: experimental and computational results permit the identification of the preferred mechanism. Chem Commun (Camb) 2016; 51:8954-7. [PMID: 25929958 DOI: 10.1039/c5cc01913c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental and computational studies on the formation of aryl azides from the corresponding diazonium salts support a stepwise mechanism via acyclic zwitterionic intermediates. The low energy barriers associated with both transition structures are compatible with very fast and efficient processes, thus making this method suitable for the chemical synthesis of radiolabelled aryl azides.
Collapse
Affiliation(s)
- Sameer M Joshi
- Radiochemistry and Nuclear Imaging, CIC biomaGUNE, Paseo Miramón 182, Parque Tecnológico de San Sebastián, 20009, San Sebastián/Donostia, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Patil S, Bugarin A. Crystal structure of (E)-1,3-dimethyl-2-[3-(3-nitro-phen-yl)triaz-2-en-1-yl-idene]-2,3-di-hydro-1H-imidazole. Acta Crystallogr Sect E Struct Rep Online 2014; 70:224-227. [PMID: 25484658 PMCID: PMC4257158 DOI: 10.1107/s1600536814020698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
The title compound, C11H12N6O2, a π-conjugated triazene, crystallized with two independent mol-ecules (A and B) in the asymmetric unit. Both mol-ecules have an E conformation about the -N=N- bond and have slightly twisted overall conformations. In mol-ecule A, the imidazole ring is inclined to the benzene ring by 8.12 (4)°, while in mol-ecule B the two rings are inclined to one another by 7.73 (4)°. In the crystal, the independent mol-ecules are linked to each other by C-H⋯O hydrogen bonds, forming -A-A-A- and -B-B-B- chains along [100]. The chains are linked by C-H⋯O and C-H⋯N hydrogen bonds, forming sheets lying parallel to (001). The sheets are linked by further C-H⋯N hydrogen bonds and π-π inter-actions [centroid-centroid distance = 3.5243 (5) Å; involving the imidazole ring of mol-ecule A and the benzene ring of mol-ecule B], forming a three-dimensional framework structure.
Collapse
Affiliation(s)
- Siddappa Patil
- Department of Chemistry & Biochemistry, University of Texas at Arlington, PO Box, 19065, Arlington, TX 76019, USA
| | - Alejandro Bugarin
- Department of Chemistry & Biochemistry, University of Texas at Arlington, PO Box, 19065, Arlington, TX 76019, USA
| |
Collapse
|
20
|
Pal R, Sarkar S, Chatterjee N, Sen AK. Efficient synthesis of 1,4-disubstituted triazolyl N-carboxamides via a simple and convenient MCR using basic alumina as solid support. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|