1
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
2
|
Ahmad T, Rasheed T, Hussain M, Rizwan K. Emergence of 2-Pyrone and Its Derivatives, from Synthesis to Biological Perspective: An Overview and Current Status. Top Curr Chem (Cham) 2021; 379:38. [PMID: 34554344 DOI: 10.1007/s41061-021-00350-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
Pyrone moieties are present in natural products and can be synthesized by a diverse range of synthetic methods, resulting in the formation of various derivatives through chemical modifications. Many pyrone-based derivatives are commercially available and are biocompatible. They are building blocks of various intermediates in organic synthesis. They possess remarkable biological properties including antimicrobial, antiviral, cytotoxic, and antitumor activity. These characteristics have made them valuable for the development of drugs. We have summarized recent developments in the synthesis of 2-pyrone and its derivatives and their potential applications. With regard to synthetic approaches, the focus has been on metal-free and transition metal-catalyzed reactions.
Collapse
Affiliation(s)
- Tanveer Ahmad
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Majid Hussain
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| |
Collapse
|
3
|
Sarkar R, Mukherjee S. Iridium-catalyzed enantioselective olefinic C(sp 2)-H allylic alkylation. Chem Sci 2021; 12:3070-3075. [PMID: 34164076 PMCID: PMC8179414 DOI: 10.1039/d0sc06208a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/11/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The first iridium-catalyzed enantioselective olefinic C(sp2)-H allylic alkylation is developed in cooperation with Lewis base catalysis. This reaction, catalyzed by cinchonidine and an in situ generated cyclometalated Ir(i)/phosphoramidite complex, makes use of the latent enolate character of an α,β-unsaturated carbonyl compound, namely coumalate ester, to introduce an allyl group at its α-position in a branched-selective manner in moderate to good yield with good to excellent enantioselectivities (up to 98 : 2 er).
Collapse
Affiliation(s)
- Rahul Sarkar
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India +91-80-2360-0529 +91-80-2293-2850
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India +91-80-2360-0529 +91-80-2293-2850
| |
Collapse
|
4
|
Huang G, Kouklovsky C, Torre A. Inverse‐Electron‐Demand Diels–Alder Reactions of 2‐Pyrones: Bridged Lactones and Beyond. Chemistry 2021; 27:4760-4788. [DOI: 10.1002/chem.202003980] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Guanghao Huang
- Université Paris-Saclay CNRS Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 15, rue Georges Clémenceau 91405 Orsay Cedex France
| | - Cyrille Kouklovsky
- Université Paris-Saclay CNRS Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 15, rue Georges Clémenceau 91405 Orsay Cedex France
| | - Aurélien Torre
- Université Paris-Saclay CNRS Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 15, rue Georges Clémenceau 91405 Orsay Cedex France
| |
Collapse
|
5
|
Stouten J, Wróblewska AA, Grit G, Noordijk J, Gebben B, Meeusen-Wierts MHM, Bernaerts KV. Polyamides containing a biorenewable aromatic monomer based on coumalate esters: from synthesis to evaluation of the thermal and mechanical properties. Polym Chem 2021. [DOI: 10.1039/d1py00005e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new biobased alternative for terephthalic acid (TPA) in (semi-)aromatic polyamides is proposed, namely 4-carboxybenzene propionic acid (4CBPA).
Collapse
Affiliation(s)
- Jules Stouten
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Faculty of Science and Engineering
- Maastricht University
- 6167 RD Geleen
- the Netherlands
| | - Aleksandra A. Wróblewska
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Faculty of Science and Engineering
- Maastricht University
- 6167 RD Geleen
- the Netherlands
| | - Glenn Grit
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Faculty of Science and Engineering
- Maastricht University
- 6167 RD Geleen
- the Netherlands
| | - Jurrie Noordijk
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Faculty of Science and Engineering
- Maastricht University
- 6167 RD Geleen
- the Netherlands
| | - Bert Gebben
- Process Technology Department
- Research and Innovation Center
- 6802 ED Arnhem
- the Netherlands
| | | | - Katrien V. Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Faculty of Science and Engineering
- Maastricht University
- 6167 RD Geleen
- the Netherlands
| |
Collapse
|
6
|
Carpita NC, McCann MC. Redesigning plant cell walls for the biomass-based bioeconomy. J Biol Chem 2020; 295:15144-15157. [PMID: 32868456 PMCID: PMC7606688 DOI: 10.1074/jbc.rev120.014561] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/30/2020] [Indexed: 01/28/2023] Open
Abstract
Lignocellulosic biomass-the lignin, cellulose, and hemicellulose that comprise major components of the plant cell well-is a sustainable resource that could be utilized in the United States to displace oil consumption from heavy vehicles, planes, and marine-going vessels and commodity chemicals. Biomass-derived sugars can also be supplied for microbial fermentative processing to fuels and chemicals or chemically deoxygenated to hydrocarbons. However, the economic value of biomass might be amplified by diversifying the range of target products that are synthesized in living plants. Genetic engineering of lignocellulosic biomass has previously focused on changing lignin content or composition to overcome recalcitrance, the intrinsic resistance of cell walls to deconstruction. New capabilities to remove lignin catalytically without denaturing the carbohydrate moiety have enabled the concept of the "lignin-first" biorefinery that includes high-value aromatic products. The structural complexity of plant cell-wall components also provides substrates for polymeric and functionalized target products, such as thermosets, thermoplastics, composites, cellulose nanocrystals, and nanofibers. With recent advances in the design of synthetic pathways, lignocellulosic biomass can be regarded as a substrate at various length scales for liquid hydrocarbon fuels, chemicals, and materials. In this review, we describe the architectures of plant cell walls and recent progress in overcoming recalcitrance and illustrate the potential for natural or engineered biomass to be used in the emerging bioeconomy.
Collapse
Affiliation(s)
- Nicholas C Carpita
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA; Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA; Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
7
|
Khademi Z, Nikoofar K. Applications of alkyl orthoesters as valuable substrates in organic transformations, focusing on reaction media. RSC Adv 2020; 10:30314-30397. [PMID: 35559005 PMCID: PMC9092620 DOI: 10.1039/d0ra05276k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
In this review we focus on applications of alkyl orthoesters as valuable and efficient substrates to perform various classes of two-component and multi-component organic reactions. The article has classified them according to two aspects, which are: (i) a focus on the reaction medium (solvent-free conditions, aqueous media, and organic solvents); and (ii) an examination of product structures. Reaction accomplishment under solvent-free conditions is an eco-friendly process with the absence of volatile toxic solvents, which puts it in line with green chemistry goals. Water is an interesting choice in organic transformations due to its inexpensiveness and safety. The authors hope their assessment will help chemists to attain new approaches for utilizing alkyl orthoesters in various organic synthetic methods. The review covers the corresponding literature up to the beginning of 2020.
Collapse
Affiliation(s)
- Zahra Khademi
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University P.O. Box 1993891176 Tehran Iran +982188041344 +982188041344
| | - Kobra Nikoofar
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University P.O. Box 1993891176 Tehran Iran +982188041344 +982188041344
| |
Collapse
|
8
|
Saktura M, Grzelak P, Dybowska J, Albrecht Ł. Asymmetric Synthesis of [2.2.2]-Bicyclic Lactones via All-Carbon Inverse-Electron-Demand Diels-Alder Reaction. Org Lett 2020; 22:1813-1817. [PMID: 32065757 PMCID: PMC7497662 DOI: 10.1021/acs.orglett.0c00138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Indexed: 01/30/2023]
Abstract
In this paper, a new cycloaddition between α,β-unsaturated aldehydes and coumalates realized under dienamine activation has been described. The reaction proceeds regioselectively with the distal double bond of the dienamine system acting as electron-rich dienophile. It leads to the formation of biologically relevant [2.2.2]-bicyclic lactones. Their functionalization potential has been confirmed in selected, diastereoselective transformations.
Collapse
Affiliation(s)
| | | | - Joanna Dybowska
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| |
Collapse
|
9
|
Tanaka K, Kishimoto M, Asada Y, Tanaka Y, Hoshino Y, Honda K. Access to Electron-Deficient 2,2-Disubstituted Chromanes: A Highly Regioselective One-Pot Synthesis via an Inverse-Electron-Demand [4 + 2] Cycloaddition of ortho-Quinone Methides. J Org Chem 2019; 84:13858-13870. [PMID: 31580068 DOI: 10.1021/acs.joc.9b02036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the one-pot synthesis of 2,2-disubstituted chromanes with electron-withdrawing substituents. This reaction provides a simple yet efficient route to a wide range of electron-deficient chromanes in high yield and excellent regioselectivity. The reaction of salicylaldehyde with 1,1-disubstituted ethylenes smoothly furnishes these electron-deficient chromanes, which can be further transformed into functionalized chromanes or chromene. For example, BW683C was effectively synthesized from 5-chlorosalicylaldehyde with 4-chlorostyrene in two steps in excellent yield. The present reaction thus provides versatile access to functionalized electron-deficient chromanes and chromenes and therefore constitutes a promising tool for the synthesis of biologically and photochemically active molecules.
Collapse
Affiliation(s)
- Kenta Tanaka
- Graduate School of Environment and Information Sciences , Yokohama National University , Tokiwadai, Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Mami Kishimoto
- Graduate School of Environment and Information Sciences , Yokohama National University , Tokiwadai, Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Yosuke Asada
- Graduate School of Environment and Information Sciences , Yokohama National University , Tokiwadai, Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Yuta Tanaka
- Graduate School of Environment and Information Sciences , Yokohama National University , Tokiwadai, Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Yujiro Hoshino
- Graduate School of Environment and Information Sciences , Yokohama National University , Tokiwadai, Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Kiyoshi Honda
- Graduate School of Environment and Information Sciences , Yokohama National University , Tokiwadai, Hodogaya-ku, Yokohama 240-8501 , Japan
| |
Collapse
|
10
|
Liang X, Zhao Y, Si X, Xu M, Tan J, Zhang Z, Zheng C, Zheng C, Cai Q. Enantioselective Synthesis of Arene
cis
‐Dihydrodiols from 2‐Pyrones. Angew Chem Int Ed Engl 2019; 58:14562-14567. [DOI: 10.1002/anie.201908284] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Xiao‐Wei Liang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Yunlong Zhao
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Xu‐Ge Si
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Meng‐Meng Xu
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Jia‐Hao Tan
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Zhi‐Mao Zhang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Cheng‐Gong Zheng
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Rd. Shanghai 200032 China
| | - Quan Cai
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| |
Collapse
|
11
|
Liang X, Zhao Y, Si X, Xu M, Tan J, Zhang Z, Zheng C, Zheng C, Cai Q. Enantioselective Synthesis of Arene
cis
‐Dihydrodiols from 2‐Pyrones. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiao‐Wei Liang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Yunlong Zhao
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Xu‐Ge Si
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Meng‐Meng Xu
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Jia‐Hao Tan
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Zhi‐Mao Zhang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Cheng‐Gong Zheng
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Rd. Shanghai 200032 China
| | - Quan Cai
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| |
Collapse
|
12
|
Yu H, Kraus GA. Divergent pathways to isophthalates and naphthalate esters from methyl coumalate. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Liu Q, Zu L. Organocatalytic Enantioselective Cross-Vinylogous Rauhut-Currier Reaction of Methyl Coumalate with Enals. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiwen Liu
- School of Pharmaceutical Sciences; Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Tsinghua University; Beijing 100084 China
| | - Liansuo Zu
- School of Pharmaceutical Sciences; Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Tsinghua University; Beijing 100084 China
- Collaborative Innovation Center for Biotherapy, West China Medical School; Sichuan University; Chengdu 610041 China
| |
Collapse
|
14
|
Liu Q, Zu L. Organocatalytic Enantioselective Cross-Vinylogous Rauhut-Currier Reaction of Methyl Coumalate with Enals. Angew Chem Int Ed Engl 2018; 57:9505-9509. [PMID: 29873432 DOI: 10.1002/anie.201805019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/02/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Qiwen Liu
- School of Pharmaceutical Sciences; Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Tsinghua University; Beijing 100084 China
| | - Liansuo Zu
- School of Pharmaceutical Sciences; Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Tsinghua University; Beijing 100084 China
- Collaborative Innovation Center for Biotherapy, West China Medical School; Sichuan University; Chengdu 610041 China
| |
Collapse
|
15
|
Fahnhorst GW, Hoye TR. A Carbomethoxylated Polyvalerolactone from Malic Acid: Synthesis and Divergent Chemical Recycling. ACS Macro Lett 2018; 7:143-147. [PMID: 35610909 DOI: 10.1021/acsmacrolett.7b00889] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report here the synthesis of a novel substituted polyvalerolactone from the renewable monomer, 4-carbomethoxyvalerolactone (CMVL, two steps from malic acid). The polymerization proceeds to high equilibrium monomer conversion to give the semicrystalline carbomethoxylated polyester with low dispersity. The material displays a glass transition temperature of -18 °C and two melting temperatures at 68 and 86 °C. This polymer can be chemically recycled by either of two independent pathways. The first (red) cleanly returns CMVL by a backbiting depolymerization from the hydroxy terminus; the second (blue) uses a base to cleave the polyester in a retro-oxa-Michael fashion. This affords a methacrylate-like monomer that we have polymerized radically to a new polymethacrylate analogue. This is a rare example of a polymer that has been shown to have two independent chemical recycling pathways leading to two different classes of monomers.
Collapse
Affiliation(s)
- Grant W. Fahnhorst
- Department of Chemistry, 207 Pleasant Street, SE, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Thomas R. Hoye
- Department of Chemistry, 207 Pleasant Street, SE, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Pfennig T, Chemburkar A, Johnson RL, Ryan MJ, Rossini AJ, Neurock M, Shanks BH. Modulating Reactivity and Selectivity of 2-Pyrone-Derived Bicyclic Lactones through Choice of Catalyst and Solvent. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toni Pfennig
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| | - Ashwin Chemburkar
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| | - Robert L. Johnson
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| | | | | | - Matthew Neurock
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| | - Brent H. Shanks
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| |
Collapse
|
17
|
Abstract
Coumalic acid is a valuable platform compound which can be prepared from malic acid, a biorenewable feedstock derived from glucose. Two flow syntheses of coumalic acid and a new heated rotating reactor are presented.
Collapse
|
18
|
Abdullahi MH, Thompson LM, Bearpark MJ, Vinader V, Afarinkia K. The role of substituents in retro Diels–Alder extrusion of CO2 from 2(H)-pyrone cycloadducts. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Schwartz TJ, Shanks BH, Dumesic JA. Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals. Curr Opin Biotechnol 2016; 38:54-62. [DOI: 10.1016/j.copbio.2015.12.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/17/2015] [Accepted: 12/30/2015] [Indexed: 11/16/2022]
|
20
|
Affiliation(s)
- Brent H Shanks
- Chemical & Biological Engineering Department, Iowa State University, 1140 L BRL (USA).
| |
Collapse
|
21
|
Schwartz TJ, O’Neill BJ, Shanks BH, Dumesic JA. Bridging the Chemical and Biological Catalysis Gap: Challenges and Outlooks for Producing Sustainable Chemicals. ACS Catal 2014. [DOI: 10.1021/cs500364y] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Thomas J. Schwartz
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Brandon J. O’Neill
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Brent H. Shanks
- Department
of Chemical and Biological Engineering, Biorenewables Research Laboratory, Iowa State University, Ames, Iowa, United States
| | - James A. Dumesic
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
22
|
Collias DI, Harris AM, Nagpal V, Cottrell IW, Schultheis MW. Biobased Terephthalic Acid Technologies: A Literature Review. Ind Biotechnol (New Rochelle N Y) 2014. [DOI: 10.1089/ind.2014.0002] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
23
|
Guney T, Lee JJ, Kraus GA. First Inverse Electron-Demand Diels–Alder Methodology of 3-Chloroindoles and Methyl Coumalate to Carbazoles. Org Lett 2014; 16:1124-7. [DOI: 10.1021/ol403733n] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tezcan Guney
- Department of Chemistry and
NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, United States
| | - Jennifer J. Lee
- Department of Chemistry and
NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, United States
| | - George A. Kraus
- Department of Chemistry and
NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
24
|
Lee JJ, Pollock III GR, Mitchell D, Kasuga L, Kraus GA. Upgrading malic acid to bio-based benzoates via a Diels–Alder-initiated sequence with the methyl coumalate platform. RSC Adv 2014. [DOI: 10.1039/c4ra07105k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Malic acid dimerization was optimized to methyl coumalate from which a Diels–Alder strategy produced a variety of bio-based benzoates.
Collapse
Affiliation(s)
- Jennifer J. Lee
- Department of Chemistry and NSF Engineering Research Center for Biorenewable Chemicals
- Iowa State University
- Ames, USA
| | - Gerald R. Pollock III
- Department of Chemistry and NSF Engineering Research Center for Biorenewable Chemicals
- Iowa State University
- Ames, USA
| | - Donald Mitchell
- Department of Chemistry and NSF Engineering Research Center for Biorenewable Chemicals
- Iowa State University
- Ames, USA
| | - Lindsay Kasuga
- Department of Chemistry and NSF Engineering Research Center for Biorenewable Chemicals
- Iowa State University
- Ames, USA
| | - George A. Kraus
- Department of Chemistry and NSF Engineering Research Center for Biorenewable Chemicals
- Iowa State University
- Ames, USA
| |
Collapse
|
25
|
Highly stereocontrolled and regiocontrolled syntheses of polyoxygenated [2.2.2]oxabicyclic synthons. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.09.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|