1
|
Yang M, Zhang M, Jia M. Optical sensor arrays for the detection and discrimination of natural products. Nat Prod Rep 2023; 40:628-645. [PMID: 36597853 DOI: 10.1039/d2np00065b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: up to the end of 2022Natural products (NPs) have found uses in medicine, food, cosmetics, materials science, environmental protection, and other fields related to our life. Their beneficial properties along with potential toxicities make the detection and discrimination of NPs crucial for their applications. Owing to the merits of low cost and simple operation, optical sensor arrays, including colorimetric and fluorometric sensor arrays, have been widely applied in the detection of small molecule NPs and discrimination of structurally similar small molecule NPs or complex mixtures of NPs. This review provides a brief introduction to the optical sensor array and focuses on its progress toward the detection and discrimination of NPs. We summarized the design principle of sensor arrays toward various NPs (i.e., saccharides and polyhydroxy compounds, organic acids, flavonoids, organic sulfur compounds, amines, amino acids, and saponins) based on their functional groups and characteristic chemical properties, along with representative examples. Moreover, the challenges and potential directions for further research of optical sensor arrays for NPs are proposed.
Collapse
Affiliation(s)
- Maohua Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Mingyan Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
2
|
Ayerdurai V, Cieplak M, Noworyta KR, Gajda M, Ziminska A, Sosnowska M, Piechowska J, Borowicz P, Lisowski W, Shao S, D'Souza F, Kutner W. Electrochemical sensor for selective tyramine determination, amplified by a molecularly imprinted polymer film. Bioelectrochemistry 2020; 138:107695. [PMID: 33296790 DOI: 10.1016/j.bioelechem.2020.107695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
A molecularly imprinted polymer (MIP) film based electrochemical sensor for selective determination of tyramine was devised, fabricated, and tested. Tyramine is generated in smoked and fermented food products. Therefore, it may serve as a marker of the rottenness of these products. Importantly, intake of large amounts of tyramine by patients treated with monoamine oxidase (MAO) inhibitors may lead to a "cheese effect", namely, a dangerous hypertensive crisis. The limit of detection at S/N = 3 of the chemosensor, in both differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) determinations, with the use of the Fe(CN)64-/Fe(CN)63- redox probe, was 159 and 168 µM tyramine, respectively. The linear dynamic concentration range was 290 µM to 2.64 mM tyramine. The chemosensor was highly selective with respect to the glucose, urea, and creatinine interferences. Its DPV determined apparent imprinting factor was 5.6. Moreover, the mechanism of the "gate effect" in the operation of the polymer film-coated electrodes was unraveled.
Collapse
Affiliation(s)
- Viknasvarri Ayerdurai
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Krzysztof R Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marianna Gajda
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-091 Warsaw, Poland
| | - Agnieszka Ziminska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-091 Warsaw, Poland
| | - Marta Sosnowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Joanna Piechowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Pawel Borowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Shuai Shao
- Department of Chemistry, University of North Texas, Denton, 1155, Union Circle, #305070, TX 76203-5017, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, 1155, Union Circle, #305070, TX 76203-5017, USA.
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland.
| |
Collapse
|
3
|
Hand RA, Piletska E, Bassindale T, Morgan G, Turner N. Application of molecularly imprinted polymers in the anti-doping field: sample purification and compound analysis. Analyst 2020; 145:4716-4736. [PMID: 32500888 DOI: 10.1039/d0an00682c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The problem posed by anti-doping requirements is one of the great analytical challenges; multiple compound detection at low ng ml-1 levels from complex samples, with requirements for exceptional confidence in results. This review surveys the design, synthesis and application of molecularly imprinted polymers (MIPs) in this field, focusing on the templating of androgenous anabolic steroids (AASs), as the most commonly abused substances, but also other WADA prohibited substances. Commentary on the application of these materials in detection, clean-up and sensing is offered, alongside views on the future of imprinting in this field.
Collapse
Affiliation(s)
- Rachel A Hand
- School of Pharmacy, De Montfort University, Leicester, LE2 9BH, UK.
| | - Elena Piletska
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Thomas Bassindale
- Department of Chemistry and Forensic Science, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Geraint Morgan
- School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Nicholas Turner
- School of Pharmacy, De Montfort University, Leicester, LE2 9BH, UK.
| |
Collapse
|
4
|
Molecularly imprinted polymers as recognition materials for electronic tongues. Biosens Bioelectron 2015; 74:856-64. [PMID: 26233642 DOI: 10.1016/j.bios.2015.07.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/10/2015] [Accepted: 07/23/2015] [Indexed: 01/18/2023]
Abstract
For over three decades now, molecularly imprinted polymers (MIPs) have successfully been used for selective chemical sensing because the shape and size of their imprinted molecular cavities perfectly matched those of the target analyte molecules. Moreover, orientation of recognizing sites of these cavities corresponded to those of the binding sites of the template molecules. In contrast, electronic tongue (e-tongue) is usually an array of low-affinity recognition units. Its selectivity is based on recognition pattern or multivariate analysis. Merging these two sensing devices led to a synergetic hybrid sensor, an MIP based e-tongue. Fabrication of these e-tongues permitted simultaneous sensing and discriminating several analytes in complex solutions of many components so that these arrays compensated for limitation in cross-reactivity of MIPs. Apparently, analytical signals generated by MIP-based e-tongues, compared to those of ordinary sensor arrays, were more reliable where a unique pattern or 'fingerprint' for each analyte was generated. Additionally, several transduction platforms (from spectroscopic to electrochemical) engaged in constructing MIP-based e-tongues, found their broad and flexible applications. The present review critically evaluates achievements in recent developments of the MIP based e-tongues for chemosensing.
Collapse
|
5
|
Bueno L, Meloni GN, Reddy SM, Paixão TRLC. Use of plastic-based analytical device, smartphone and chemometric tools to discriminate amines. RSC Adv 2015. [DOI: 10.1039/c5ra01822f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amine-based volatile compounds released by microorganisms offer an alternative diagnostic approach for the identification of foodborne pathogens.
Collapse
Affiliation(s)
- Lígia Bueno
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | | | | | | |
Collapse
|
6
|
Long Z, Lu Y, Zhang M, Qiu H. Selective recognition and discrimination of water-soluble azo dyes by a seven-channel molecularly imprinted polymer sensor array. J Sep Sci 2014; 37:2764-70. [DOI: 10.1002/jssc.201400684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Zerong Long
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute; Urumqi P. R. China
| | - Yi Lu
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute; Urumqi P. R. China
| | - Mingliang Zhang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Science; Lanzhou P. R. China
| | - Hongdeng Qiu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Science; Lanzhou P. R. China
| |
Collapse
|
7
|
Xiaowei H, Xiaobo Z, Jiewen Z, Jiyong S, Zhihua L, Tingting S. Monitoring the biogenic amines in Chinese traditional salted pork in jelly (Yao-meat) by colorimetric sensor array based on nine natural pigments. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12620] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huang Xiaowei
- School of Food and Biological Engineering; Jiangsu university; 301 Xuefu Rd. 212013 Zhenjiang Jiangsu China
| | - Zou Xiaobo
- School of Food and Biological Engineering; Jiangsu university; 301 Xuefu Rd. 212013 Zhenjiang Jiangsu China
- Key Laboratory of Modern Agricultural Equipment and Technology; 301 Xuefu Rd. 212013 Zhenjiang Jiangsu China
| | - Zhao Jiewen
- School of Food and Biological Engineering; Jiangsu university; 301 Xuefu Rd. 212013 Zhenjiang Jiangsu China
| | - Shi Jiyong
- School of Food and Biological Engineering; Jiangsu university; 301 Xuefu Rd. 212013 Zhenjiang Jiangsu China
| | - Li Zhihua
- School of Food and Biological Engineering; Jiangsu university; 301 Xuefu Rd. 212013 Zhenjiang Jiangsu China
| | - Shen Tingting
- School of Food and Biological Engineering; Jiangsu university; 301 Xuefu Rd. 212013 Zhenjiang Jiangsu China
| |
Collapse
|