Takada T, Takemura M, Kawano Y, Nakamura M, Yamana K. Photoresponsive DNA monolayer prepared by primer extension reaction on the electrode.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015;
31:3993-3998. [PMID:
25807074 DOI:
10.1021/la505013u]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe a simple and convenient method for the preparation of photoresponsive DNA-modified electrodes using primer extension (PEX) reactions. A naphthalimide derivative was used as the photosensitizer that was attached to the C5-position of 2'-deoxyuridine-5'-triphosphate (dUTP(NI)). It has been found that dUTP(NI) is a good substrate for the PEX reactions using KOD Dash and Vent (exo-) enzymes in solutions to incorporate naphthalimide (NI) moieties into the DNA sequences. On the electrode surface immobilized with the primer/template DNA, the PEX reactions to incorporate dUTP(NI) molecules into the DNA sequence were found to efficiently proceed. With this solid-phase method, the DNA monolayers capable of generating photocurrent due to the photoresponsive NI molecule can be constructed. It was shown that the photocurrent generation was significantly suppressed by a single-nucleotide mismatch included in the primer/template DNA, which is applicable for the design of photoelectrochemical sensors to discriminate single-nucleotide sequences.
Collapse