Barthwal R, Mahar R. Exploring the Significance, Extraction, and Characterization of Plant-Derived Secondary Metabolites in Complex Mixtures.
Metabolites 2024;
14:119. [PMID:
38393011 PMCID:
PMC10890687 DOI:
10.3390/metabo14020119]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Secondary metabolites are essential components for the survival of plants. Secondary metabolites in complex mixtures from plants have been adopted and documented by different traditional medicinal systems worldwide for the treatment of various human diseases. The extraction strategies are the key components for therapeutic development from natural sources. Polarity-dependent solvent-selective extraction, acidic and basic solution-based extraction, and microwave- and ultrasound-assisted extraction are some of the most important strategies for the extraction of natural products from plants. The method needs to be optimized to isolate a specific class of compounds. Therefore, to establish the mechanism of action, the characterization of the secondary metabolites, in a mixture or in their pure forms, is equally important. LC-MS, GC-MS, and extensive NMR spectroscopic strategies are established techniques for the profiling of metabolites in crude extracts. Various protocols for the extraction and characterization of a wide range of classes of compounds have been developed by various research groups and are described in this review. Additionally, the possible means of characterizing the compounds in the mixture and their uniqueness are also discussed. Hyphenated techniques are crucial for profiling because of their ability to analyze a vast range of compounds. In contrast, inherent chemical shifts make NMR an indispensable tool for structure elucidation in complex mixtures.
Collapse