1
|
Tokuhiro Y, Yoshikawa K, Murayama S, Nanjo T, Takemoto Y. Highly Stereoselective, Organocatalytic Mannich-type Addition of Glyoxylate Cyanohydrin: A Versatile Building Block for the Asymmetric Synthesis of β-Amino-α-ketoacids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yusuke Tokuhiro
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Kosuke Yoshikawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Sei Murayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Nanjo T, Zhang X, Tokuhiro Y, Takemoto Y. Divergent and Scalable Synthesis of α-Hydroxy/Keto-β-amino Acid Analogues by the Catalytic Enantioselective Addition of Glyoxylate Cyanohydrin to Imines. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03394] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Xuan Zhang
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Tokuhiro
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Bracco P, Busch H, von Langermann J, Hanefeld U. Enantioselective synthesis of cyanohydrins catalysed by hydroxynitrile lyases - a review. Org Biomol Chem 2018; 14:6375-89. [PMID: 27282284 DOI: 10.1039/c6ob00934d] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The first enantioselective synthesis was the selective addition of cyanide to benzaldehyde catalysed by a hydroxynitrile lyase (HNL). Since then these enzymes have been developed into a reliable tool in organic synthesis. HNLs to prepare either the (R)- or the (S)-enantiomer of the desired cyanohydrin are available and a wide variety of reaction conditions can be applied. As a result of this, numerous applications of these enzymes in organic synthesis have been described. Here the examples of the last decade are summarised, the enzyme catalysed step is discussed and the follow-up chemistry is shown. This proves HNLs to be part of main stream organic synthesis. Additionally the newest approaches via immobilisation and reaction engineering are introduced.
Collapse
Affiliation(s)
- Paula Bracco
- Gebouw voor Scheikunde, Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Julianalaan 136, 2628BL Delft, The Netherlands.
| | - Hanna Busch
- Gebouw voor Scheikunde, Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Julianalaan 136, 2628BL Delft, The Netherlands.
| | - Jan von Langermann
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Ulf Hanefeld
- Gebouw voor Scheikunde, Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Julianalaan 136, 2628BL Delft, The Netherlands.
| |
Collapse
|
4
|
Wu W, Yi S, Yu Y, Huang W, Jiang H. Synthesis of Sulfonylated Lactones via Ag-Catalyzed Cascade Sulfonylation/Cyclization of 1,6-Enynes with Sodium Sulfinates. J Org Chem 2017; 82:1224-1230. [DOI: 10.1021/acs.joc.6b02416] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wanqing Wu
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Songjian Yi
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yue Yu
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wei Huang
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Yang X, Yang S, Chai H, Yang Z, Lee RJ, Liao W, Teng L. A Novel Isoquinoline Derivative Anticancer Agent and Its Targeted Delivery to Tumor Cells Using Transferrin-Conjugated Liposomes. PLoS One 2015; 10:e0136649. [PMID: 26309138 PMCID: PMC4550422 DOI: 10.1371/journal.pone.0136649] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/06/2015] [Indexed: 01/01/2023] Open
Abstract
We have screened 11 isoquinoline derivatives and α-methylene-γ-butyrolactones using the 3-(4,5-dimethylthi-azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay in HeLa and HEK-293T cells. Compound 2 was identified as potential anticancer agent. To further improve its therapeutic potential, this agent was incorporated into transferrin (Tf)-conjugated liposomes (LPs) for targeted delivery to tumor cells. We have demonstrated Tf-LP-Compound 2 have superior antitumor activity compared to non-targeted controls and the free drug. These data show Tf-LP-Compound 2 to be a promising agent that warrants further evaluation.
Collapse
Affiliation(s)
- Xuewei Yang
- College of Life Sciences, Jilin University, Changchun, China
| | - Shuang Yang
- College of Life Sciences, Jilin University, Changchun, China
| | - Hongyu Chai
- College of Life Sciences, Jilin University, Changchun, China
| | - Zhaogang Yang
- College of Pharmacy, The Ohio State University, Columbus, United States of America
| | - Robert J. Lee
- College of Life Sciences, Jilin University, Changchun, China
- College of Pharmacy, The Ohio State University, Columbus, United States of America
| | - Weiwei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, China
- * E-mail: (LT); (WL)
| | - Lesheng Teng
- College of Life Sciences, Jilin University, Changchun, China
- * E-mail: (LT); (WL)
| |
Collapse
|
6
|
A facile and mild synthesis of trisubstituted allylic sulfones from Morita-Baylis-Hillman carbonates. Molecules 2015; 20:8213-22. [PMID: 25961162 PMCID: PMC6272667 DOI: 10.3390/molecules20058213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 11/17/2022] Open
Abstract
An efficient and catalyst-free synthesis of trisubstituted allylic sulfones through an allylic sulfonylation reaction of Morita-Baylis-Hillman (MBH) carbonates with sodium sulfinates has been developed. Under the optimized reaction conditions, a series of trisubstituted allylic sulfones were rapidly prepared in good to excellent yields (71%–99%) with good to high selectivity (Z/E from 79:21 to >99:1). Compared with known synthetic methods, the current protocol features mild reaction temperature, high efficiency and easily available reagents.
Collapse
|
7
|
Putaj P, Tichá I, Císařová I, Veselý J. One-Pot Preparation of Chiral Carbacycles from Morita-Baylis-Hillman Carbonates by an Asymmetric Allylic Alkylation/Olefin Metathesis Sequence. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|