1
|
Tarai A, Nath B. A review on oxime functionality: an ordinary functional group with significant impacts in supramolecular chemistry. Chem Commun (Camb) 2024; 60:7266-7287. [PMID: 38916274 DOI: 10.1039/d4cc01397b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The oxime functional group is pivotal in chemistry, finding extensive applications in medical science, catalysis, organic functional group transformations, and the recognition of essential and toxic analytes. While the coordination chemistry of oxime derivatives has been thoroughly explored and several reviews have been published on this topic in reputable journals, a comprehensive review encompassing various aspects such as crystal engineering, cation and anion recognition, as well as coordination chemistry activities, is still in demand. This feature article highlights the diverse applications of oxime derivatives across multiple domains of chemistry, including medicine, agriculture, crystal engineering, coordination chemistry, and molecular recognition studies. Each of the oxime derivatives in this feature article are meticulously described in terms of their medicinal applications, crop protection, crystal engineering attributes, analyte recognition capabilities, and coordination chemistry aspects. By providing a comprehensive overview of their versatile applications, this article aims to inspire researchers to explore and develop novel oxime-based derivatives for future applications.
Collapse
Affiliation(s)
- Arup Tarai
- School of Advanced Sciences and Languages (SASL), VIT Bhopal University, Bhopal-466114, Madya Pradesh, India.
| | - Bhaskar Nath
- Department of Educational Sciences, Assam University Silchar, Assam-788011, India.
| |
Collapse
|
2
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Segura C, Yañez O, Galdámez A, Tapia V, Núñez MT, Osorio-Román I, García C, García-Beltrán O. Synthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamine. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Moya-Alvarado G, Yañez O, Morales N, González-González A, Areche C, Núñez MT, Fierro A, García-Beltrán O. Coumarin-Chalcone Hybrids as Inhibitors of MAO-B: Biological Activity and In Silico Studies. Molecules 2021; 26:molecules26092430. [PMID: 33921982 PMCID: PMC8122463 DOI: 10.3390/molecules26092430] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 01/22/2023] Open
Abstract
Fourteen coumarin-derived compounds modified at the C3 carbon of coumarin with an α,β-unsaturated ketone were synthesized. These compounds may be designated as chalcocoumarins (3-cinnamoyl-2H-chromen-2-ones). Both chalcones and coumarins are recognized scaffolds in medicinal chemistry, showing diverse biological and pharmacological properties among which neuroprotective activities and multiple enzyme inhibition, including mitochondrial enzyme systems, stand out. The evaluation of monoamine oxidase B (MAO-B) inhibitors has aroused considerable interest as therapeutic agents for neurodegenerative diseases such as Parkinson's. Of the fourteen chalcocumarins evaluated here against MAO-B, ChC4 showed the strongest activity in vitro, with IC50 = 0.76 ± 0.08 µM. Computational docking, molecular dynamics and MM/GBSA studies, confirm that ChC4 binds very stably to the active rMAO-B site, explaining the experimental inhibition data.
Collapse
Affiliation(s)
| | - Osvaldo Yañez
- Center of New Drugs for Hypertension (CENDHY), Santiago 8330015, Chile;
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago 7550196, Chile
| | - Nicole Morales
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| | - Angélica González-González
- Laboratorio de Interacciones Insecto-Planta, Instituto de Ciencias Biológicas, Universidad de Talca, Casilla 747, Talca 3460000, Chile;
| | - Carlos Areche
- Department of Chemistry, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Nuñoa, Santiago 7800024, Chile;
| | - Marco Tulio Núñez
- Biology Department, Faculty of Sciences, Universidad de Chile, Santiago 7800024, Chile;
| | - Angélica Fierro
- Department of Organic Chemistry, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile
- Correspondence: (A.F.); (O.G.-B.)
| | - Olimpo García-Beltrán
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730002, Colombia
- Correspondence: (A.F.); (O.G.-B.)
| |
Collapse
|
5
|
Chakraborty S, Ravindran V, Nidheesh PV, Rayalu S. Optical Sensing of Copper and Its Removal by Different Environmental Technologies. ChemistrySelect 2020. [DOI: 10.1002/slct.202002113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shampa Chakraborty
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra India
| | - Vyshakh Ravindran
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra India
| | - P. V. Nidheesh
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra India
| | - Sadhana Rayalu
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra India
| |
Collapse
|
6
|
Filipe HAL, Moreno MJ, Loura LMS. The Secret Lives of Fluorescent Membrane Probes as Revealed by Molecular Dynamics Simulations. Molecules 2020; 25:E3424. [PMID: 32731549 PMCID: PMC7435664 DOI: 10.3390/molecules25153424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022] Open
Abstract
Fluorescent probes have been employed for more than half a century to study the structure and dynamics of model and biological membranes, using spectroscopic and/or microscopic experimental approaches. While their utilization has led to tremendous progress in our knowledge of membrane biophysics and physiology, in some respects the behavior of bilayer-inserted membrane probes has long remained inscrutable. The location, orientation and interaction of fluorophores with lipid and/or water molecules are often not well known, and they are crucial for understanding what the probe is actually reporting. Moreover, because the probe is an extraneous inclusion, it may perturb the properties of the host membrane system, altering the very properties it is supposed to measure. For these reasons, the need for independent methodologies to assess the behavior of bilayer-inserted fluorescence probes has been recognized for a long time. Because of recent improvements in computational tools, molecular dynamics (MD) simulations have become a popular means of obtaining this important information. The present review addresses MD studies of all major classes of fluorescent membrane probes, focusing in the period between 2011 and 2020, during which such work has undergone a dramatic surge in both the number of studies and the variety of probes and properties accessed.
Collapse
Affiliation(s)
- Hugo A. L. Filipe
- Chemistry Department, Coimbra Chemistry Center, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Maria João Moreno
- Coimbra Chemistry Center and CNC—Center for Neuroscience and Cell Biology, Chemistry Department, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Luís M. S. Loura
- Coimbra Chemistry Center and CNC—Center for Neuroscience and Cell Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
7
|
Zhang K, Shu J, Li J, Meng L, Yang Y, Xu B, Jiang W. H-aggregate triggered mechanochromic luminescence property of 7-(diethylamino)-coumarin-3-carbaldehyde oxime derivative. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Zhu L, Yang X, Luo X, Hu B, Huang W. A highly selective fluorescent probe based on coumarin and pyrimidine hydrazide for Cu2+ ion detection. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Aliaga ME, Gazitua M, Rojas-Bolaños A, Fuentes-Estrada M, Durango D, García-Beltrán O. A selective thioxothiazolidin-coumarin probe for Hg 2+ based on its desulfurization reaction. Exploring its potential for live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117372. [PMID: 31344574 DOI: 10.1016/j.saa.2019.117372] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Sensing the most toxic heavy metal (mercury) has attracted a lot of attention in recent years due to its extreme harmfulness to both human health and the environment. Thus, we reported herein the synthesis, spectroscopic and kinetic characterization, and biological evaluation of a new thioxothiazolidin coumarin derivative (ILA92), which undergoes a desulfurization reaction induced by mercuric ions (Hg2+). This process is the origin of a selective sensing of Hg2+ ions in aqueous solution by colorimetric and fluorescent methods. Furthermore, the probe showed great potential for imaging Hg2+ in living cells.
Collapse
Affiliation(s)
- Margarita E Aliaga
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile.
| | - Marcela Gazitua
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile
| | - Andrea Rojas-Bolaños
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué 730002, Colombia
| | - Marcial Fuentes-Estrada
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué 730002, Colombia
| | - Diego Durango
- Universidad Nacional de Colombia, Sede Medellín, Escuela de Química, Carrera 65, No. 59A-110, Medellín, Colombia
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué 730002, Colombia.
| |
Collapse
|
10
|
Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem Rev 2019; 119:10403-10519. [PMID: 31314507 DOI: 10.1021/acs.chemrev.9b00145] [Citation(s) in RCA: 676] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coumarins are a very large family of compounds containing the unique 2H-chromen-2-one motif, as it is known according to IUPAC nomenclature. Coumarin derivatives are widely found in nature, especially in plants and are constituents of several essential oils. Up to now, thousands of coumarin derivatives have been isolated from nature or produced by chemists. More recently, the coumarin platform has been widely adopted in the design of small-molecule fluorescent chemosensors because of its excellent biocompatibility, strong and stable fluorescence emission, and good structural flexibility. This scaffold has found wide applications in the development of fluorescent chemosensors in the fields of molecular recognition, molecular imaging, bioorganic chemistry, analytical chemistry, materials chemistry, as well as in the biology and medical science communities. This review focuses on the important progress of coumarin-based small-molecule fluorescent chemosensors during the period of 2012-2018. This comprehensive and critical review may facilitate the development of more powerful fluorescent chemosensors for broad and exciting applications in the future.
Collapse
Affiliation(s)
- Duxia Cao
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China
| | - Peter Verwilst
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Seyoung Koo
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | | | - Jong Seung Kim
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , China.,School of Chemistry and Chemical Engineering , Guangxi University , Nanning , Guangxi 530004 , P. R. China
| |
Collapse
|
11
|
Saleem M, Rafiq M, Hanif M, Shaheen MA, Seo SY. A Brief Review on Fluorescent Copper Sensor Based on Conjugated Organic Dyes. J Fluoresc 2017; 28:97-165. [DOI: 10.1007/s10895-017-2178-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/19/2017] [Indexed: 02/08/2023]
|
12
|
Guo Y, Wang L, Zhuo J, Xu B, Li X, Zhang J, Zhang Z, Chi H, Dong Y, Lu G. A pyrene-based dual chemosensor for colorimetric detection of Cu 2+ and fluorescent detection of Fe 3+. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.078] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Cigáň M, Horváth M, Filo J, Jakusová K, Donovalová J, Garaj V, Gáplovský A. 7-Dialkylaminocoumarin Oximates: Small Molecule Fluorescent "Turn-On" Chemosensors for Low-Level Water Content in Aprotic Organic Solvents. Molecules 2017; 22:molecules22081340. [PMID: 28805688 PMCID: PMC6152144 DOI: 10.3390/molecules22081340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 11/22/2022] Open
Abstract
The water sensing properties of two efficient two-component fluorescent “turn-on” chemo-sensors based on the 7-dialkylaminocoumarin oxime acid-base equilibrium were investigated. Interestingly, although simple frontier orbital analysis predicts an intramolecular photoinduced electron transfer quenching pathway in conjugated oximates, TD-DFT (Time-dependent density functional theory) quantum chemical calculations support non-radiative dark S1 excited state deactivation as a fluorescence quenching mechanism. Due to the acid-base sensing mechanism and sensitive “turn-on” fluorescent response, both studied coumarin aldoxime chemosensors exhibit rapid response to low-level water content in polar aprotic solvents, with detection limits comparable to chemodosimeters or chemosensors based on interpolymer π-stacking aggregation.
Collapse
Affiliation(s)
- Marek Cigáň
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Ilkovičova 6, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovakia.
| | - Miroslav Horváth
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Ilkovičova 6, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovakia.
| | - Juraj Filo
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Ilkovičova 6, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovakia.
| | - Klaudia Jakusová
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Ilkovičova 6, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovakia.
| | - Jana Donovalová
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Ilkovičova 6, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovakia.
| | - Vladimír Garaj
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, SK-832 32 Bratislava, Slovakia.
| | - Anton Gáplovský
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Ilkovičova 6, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovakia.
| |
Collapse
|
14
|
A new fluorescent chemosensor for recognition of Hg2+ ions based on a coumarin derivative. Talanta 2017; 162:403-407. [DOI: 10.1016/j.talanta.2016.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/24/2016] [Accepted: 10/02/2016] [Indexed: 02/06/2023]
|
15
|
Saleem M, Lee KH. Optical sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv 2015. [DOI: 10.1039/c5ra11388a] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this review, we cover the recent developments in fluorogenic and chromogenic sensors for Cu2+, Fe2+/Fe3+, Zn2+and Hg2+.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry
- Kongju National University
- Gongju
- Republic of Korea
| | - Ki Hwan Lee
- Department of Chemistry
- Kongju National University
- Gongju
- Republic of Korea
| |
Collapse
|
16
|
Yeh JT, Chen WC, Liu SR, Wu SP. A coumarin-based sensitive and selective fluorescent sensor for copper(ii) ions. NEW J CHEM 2014. [DOI: 10.1039/c4nj00695j] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new coumarin-derived fluorescent probe (1) exhibited significant fluorescence quenching in the presence of Cu2+ ions.
Collapse
Affiliation(s)
- Jiun-Ting Yeh
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Republic of China
| | - Wei-Chieh Chen
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Republic of China
| | - Shi-Rong Liu
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Republic of China
| | - Shu-Pao Wu
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Republic of China
| |
Collapse
|