1
|
Luo Y, Huang W. Base-mediated carboxylation of C-nucleophiles with CO 2. Org Biomol Chem 2023; 21:8628-8641. [PMID: 37860946 DOI: 10.1039/d3ob01367g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Carbon dioxide (CO2) is an available, abundant, and renewable C1 resource, which could be converted into value-added chemicals. Due to its inherent thermodynamic stability and kinetic inertness, it is difficult to realize its efficient utilization. Nevertheless, many elegant strategies for the utilization of CO2 have been developed using Lewis bases, frustrated Lewis pairs, hydroxyl-containing compounds, amino-group-containing compounds or transition metal catalysis. Among them, base-mediated carboxylation of C-nucleophiles is an environmentally friendly strategy for CO2 conversion, which is operationally simple, using low-toxicity bases and economical available promoters, without the use of complex ligands or cocatalysts. This review summarizes related work on the base-mediated carboxylation of C-nucleophiles with CO2, based on the effects of nucleophiles, promoters, additives, and solvents. The types of pronucleophile are categorized as follows: hydrocarbon with C(sp3)-H, C(sp2)-H or C(sp)-H bonds, organosilanes, organotin, organoboron, and N-tosylhydrazones. Typical mechanisms and applications of these carboxylation reactions are also depicted. Moreover, mechanistic comprehension of CO2 activation and conversion at a molecular level aims to further expand the repertoire of carboxylation transformations mediated by bases.
Collapse
Affiliation(s)
- Yanlong Luo
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Wenbin Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Zhang L, Gao EQ. Catalytic C(sp)-H carboxylation with CO2. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Chen F, Tao S, Liu N, Dai B. CNN-Type Binuclear Cu(I) Complexes Catalyzed Direct Carboxylation via the Fixation of CO 2 at Room Temperature. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Goudou F, Gee AD, Bongarzone S. Carbon-11 carboxylation of terminal alkynes with [ 11 C]CO 2. J Labelled Comp Radiopharm 2021; 64:237-242. [PMID: 33665888 DOI: 10.1002/jlcr.3907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 11/12/2022]
Abstract
A copper-catalysed radiosynthesis of carbon-11 radiolabelled carboxylic acids was developed by reacting terminal alkynes and cyclotron-produced carbon-11 carbon dioxide ([11 C]CO2 ) in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). A small library of 11 C-labelled propiolic acid derivatives were obtained with a total synthesis time of 15 min from end of bombardment (EOB) with a (non-isolated) radiochemical yield ranging from 7% to 28%.
Collapse
Affiliation(s)
- Francesca Goudou
- Research and Development Department, SYNBIOLAB, Baie-Mahault, Guadeloupe
- Research and Development Department, PMB Head Office, Peynier, France
- School of Imaging Sciences & Biomedical Engineering, St Thomas' Hospital, King's College London, London, UK
| | - Antony D Gee
- School of Imaging Sciences & Biomedical Engineering, St Thomas' Hospital, King's College London, London, UK
| | - Salvatore Bongarzone
- School of Imaging Sciences & Biomedical Engineering, St Thomas' Hospital, King's College London, London, UK
| |
Collapse
|
5
|
Affiliation(s)
- Hong-Ru Li
- College of Pharmacy, Nankai University, Tianjin 300353, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Transition metal-free carboxylation of terminal alkynes with carbon dioxide through dual activation: Synthesis of propiolic acids. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Hong J, Li M, Zhang J, Sun B, Mo F. C-H Bond Carboxylation with Carbon Dioxide. CHEMSUSCHEM 2019; 12:6-39. [PMID: 30381905 DOI: 10.1002/cssc.201802012] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Carbon dioxide is a nontoxic, renewable, and abundant C1 source, whereas C-H bond functionalization represents one of the most important approaches to the construction of carbon-carbon bonds and carbon-heteroatom bonds in an atom- and step-economical manner. Combining the chemical transformation of CO2 with C-H bond functionalization is of great importance in the synthesis of carboxylic acids and their derivatives. The contents of this Review are organized according to the type of C-H bond involved in carboxylation. The primary types of C-H bonds are as follows: C(sp)-H bonds of terminal alkynes, C(sp2 )-H bonds of (hetero)arenes, vinylic C(sp2 )-H bonds, the ipso-C(sp2 )-H bonds of the diazo group, aldehyde C(sp2 )-H bonds, α-C(sp3 )-H bonds of the carbonyl group, γ-C(sp3 )-H bonds of the carbonyl group, C(sp3 )-H bonds adjacent to nitrogen atoms, C(sp3 )-H bonds of o-alkyl phenyl ketones, allylic C(sp3 )-H bonds, C(sp3 )-H bonds of methane, and C(sp3 )-H bonds of halogenated aliphatic hydrocarbons. In addition, multicomponent reactions, tandem reactions, and key theoretical studies related to the carboxylation of C-H bonds are briefly summarized. Transition-metal-free, organocatalytic, electrochemical, and light-driven methods are highlighted.
Collapse
Affiliation(s)
- Junting Hong
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Man Li
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Jianning Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Beiqi Sun
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| |
Collapse
|
8
|
Mondal T, Dutta S, De S, Koley D. Computational Exploration of Mechanistic Avenues in C-H Activation Assisted Pd-Catalyzed Carbonylative Coupling. J Org Chem 2019; 84:257-272. [PMID: 30525639 DOI: 10.1021/acs.joc.8b02630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The detailed mechanism of the intermolecular Pd-catalyzed carbonylative coupling reaction between aryl bromides and polyfluoroarenes relying on C(sp2)-H activation was investigated using state-of-the-art computational methods (SMD-B3LYP-D3(BJ)/BS2//B3LYP-D3/BS1). The mechanism unveils the necessary and important roles of a slight excess of carbon monoxide: acting as a ligand in the active catalyst state, participating as a reactant in the carbonylation process, and accelerating the final reductive elimination event. Importantly, the desired carbonylative coupling route follows the rate-limiting C-H activation process via the concerted metalation-deprotonation pathway, which is slightly more feasible than the decarboxylative route leading to byproduct formation by 1.2 kcal/mol. The analyses of the free energies indicate that the choice of base has a significant effect on the reaction mechanism and its energetics. The Cs2CO3 base guides the reaction toward the coupling route, whereas carbonate bases such as K2CO3 and Na2CO3 switch toward an undesired decarboxylative path. However, K3PO4 significantly reduces the C-H activation barrier over the decarboxylation reaction barrier and can act as a potential alternative base. The positional influence of a methoxy substituent in bromoanisole and different substituent effects in polyfluoroarenes were also considered. Our results show that different substituents impose significant impact on the desired carbonylative product formation energetics. Considering the influence of several ligands leads to the conclusion that other phosphine and N-heterocyclic carbene, such as P nBuAd2 and IMes, can be used as an efficient alternative than the experimentally reported P tBu3 ligand exhibiting a clear preference for C-H activation (ΔΔ⧧ GLS) by 7.1 and 10.9 kcal/mol, respectively. We have also utilized the energetic span model to interpret the experimental results. Moreover, to elucidate the origin of activation barriers, energy decomposition analysis calculations were accomplished for the critical transition states populating the energy profiles.
Collapse
Affiliation(s)
- Totan Mondal
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741 246 , India
| | - Sayan Dutta
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741 246 , India
| | - Sriman De
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741 246 , India
| | - Debasis Koley
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741 246 , India
| |
Collapse
|
9
|
Wang, Y, Yin, Q, Guo, D, Han, LSQ, Hong, H, Suo, Q, Suo. Q. Carbonyl Cobalt-Catalyzed Cyclotrimerization of Terminal Alkynes in Supercritical Carbon Dioxide. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201904021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Tortajada A, Juliá‐Hernández F, Börjesson M, Moragas T, Martin R. Transition‐Metal‐Catalyzed Carboxylation Reactions with Carbon Dioxide. Angew Chem Int Ed Engl 2018; 57:15948-15982. [DOI: 10.1002/anie.201803186] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Andreu Tortajada
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Francisco Juliá‐Hernández
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Marino Börjesson
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Toni Moragas
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- ICREA Passeig Lluís Companys, 23 08010 Barcelona Spain
| |
Collapse
|
11
|
Tortajada A, Juliá‐Hernández F, Börjesson M, Moragas T, Martin R. Übergangsmetallkatalysierte Carboxylierungen mit Kohlendioxid. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803186] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andreu Tortajada
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spanien
| | - Francisco Juliá‐Hernández
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spanien
| | - Marino Börjesson
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spanien
| | - Toni Moragas
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spanien
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spanien
- ICREA Passeig Lluís Companys, 23 08010 Barcelona Spanien
| |
Collapse
|
12
|
1,3-Bis(4-methylbenzyl)imidazol-2-ylidene silver(I) chloride catalyzed carboxylative coupling of terminal alkynes, butyl iodide and carbon dioxide. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2017.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Copper(0) Nanoparticles Supported on Al2O3 as Catalyst for Carboxylation of Terminal Alkynes. Catal Letters 2017. [DOI: 10.1007/s10562-017-2127-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Yuan Y, Chen C, Zeng C, Mousavi B, Chaemchuen S, Verpoort F. Carboxylation of Terminal Alkynes with Carbon Dioxide Catalyzed by an In Situ Ag2O/N-Heterocyclic Carbene Precursor System. ChemCatChem 2017. [DOI: 10.1002/cctc.201601379] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 P.R. China
- School of Material Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Cheng Zeng
- School of Material Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Bibimaryam Mousavi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 P.R. China
- School of Material Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
- National Research Tomsk Polytechnic University; Lenin Avenue 30 Tomsk 634050 Russian Federation
- Global Campus Songdo; Ghent University; 119 Songdomunhwa-Ro, Yeonsu-Gu Incheon Korea
| |
Collapse
|
15
|
Wu XF, Zheng F. Synthesis of Carboxylic Acids and Esters from CO 2. Top Curr Chem (Cham) 2016; 375:4. [PMID: 27957706 DOI: 10.1007/s41061-016-0091-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Abstract
The achievements in the synthesis of carboxylic acids and esters from CO2 have been summarized and discussed.
Collapse
Affiliation(s)
- Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou, 310018, People's Republic of China.
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.
| | - Feng Zheng
- Hangzhou Branch of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 600 No. 21 Street, Hangzhou, China.
| |
Collapse
|
16
|
Zhang W, Wang S, Zhao Y, Ma X. Hydrogenation of scCO2 to Formic Acid Catalyzed by Heterogeneous Ruthenium(III)/Al2O3 Catalysts. CHEM LETT 2016. [DOI: 10.1246/cl.160013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wenjing Zhang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University
- Tianjin Co-Innovation Center of Chemical Science and Engineering (COIC_CSE), Tianjin University
| | - Shengping Wang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University
- Tianjin Co-Innovation Center of Chemical Science and Engineering (COIC_CSE), Tianjin University
| | - Yujun Zhao
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University
- Tianjin Co-Innovation Center of Chemical Science and Engineering (COIC_CSE), Tianjin University
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University
- Tianjin Co-Innovation Center of Chemical Science and Engineering (COIC_CSE), Tianjin University
| |
Collapse
|
17
|
Li S, Sun J, Zhang Z, Xie R, Fang X, Zhou M. Carboxylation of terminal alkynes with CO2using novel silver N-heterocyclic carbene complexes. Dalton Trans 2016; 45:10577-84. [DOI: 10.1039/c6dt01746k] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Hydrogenation of Carbon Dioxide to Formate Catalyzed by a Copper/1,8-Diazabicyclo[5.4.0]undec-7-ene System. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500043] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Brill M, Lazreg F, Cazin CSJ, Nolan SP. Transition Metal-Catalyzed Carboxylation of Organic Substrates with Carbon Dioxide. TOP ORGANOMETAL CHEM 2015. [DOI: 10.1007/3418_2015_110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|