1
|
Li WZ, Li J, Ma WL, Zhang XS, Liu Y, Luan J. Fabrication of nanofibrous membranes decorated with metal-organic frameworks for detection of pollutants in water. Talanta 2024; 269:125496. [PMID: 38043341 DOI: 10.1016/j.talanta.2023.125496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
The environmental pollution caused by antibiotics, Fe3+ and MnO4- pollutants is becoming increasingly serious. Polyacrylonitrile (PAN) and polymethyl methacrylate (PMMA) were used and decorated with metal-organic frameworks (MOFs) to fabricated three kinds of nanofibrous membranes (NFMs) with different shapes and sizes were prepared by electrospinning technology using in situ growth method and mixed spinning method. The structures and properties of the above three kinds of NFMs were characterized. Among them, PAN@Co/Mn-MOF-74 NFM prepared by in-situ growth method based on PAN was a kind of nano-fluorescent NFM sensor with uniform structure and good fluorescence performance. It showed unique specificity and excellent sensitivity in the detection of ORN, Fe3+ and MnO4-. Compared with previously reported functionalized MOFs, PAN@Co/Mn-MOF-74 NFM has a lower limit of detection (LOD). This study provides a feasible technical route for the preparation of nano-fluorescent NFMs and the targeted detection of trace metal ions and antibiotics.
Collapse
Affiliation(s)
- Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Jing Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Wan-Lin Ma
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Xiao-Sa Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
2
|
Alsam AA. Comparative Investigation of Ultrafast Excited-State Electron Transfer in Both Polyfluorene-Graphene Carboxylate and Polyfluorene-DCB Interfaces. Molecules 2024; 29:634. [PMID: 38338379 PMCID: PMC10856661 DOI: 10.3390/molecules29030634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
The Photophysical properties, such as fluorescence quenching, and photoexcitation dynamics of bimolecular non-covalent systems consisting of cationic poly[(9,9-di(3,3'-N,N'-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and anionic graphene carboxylate (GC) have been discovered for the first time via steady-state and time-resolved femtosecond transient absorption (TA) spectroscopy with broadband capabilities. The steady-state fluorescence of PFN is quenched with high efficiency by the GC acceptor. Fluorescence lifetime measurements reveal that the quenching mechanism of PFN by GC is static. Here, the quenching mechanisms are well proven via the TA spectra of PFN/GC systems. For PFN/GC systems, the photo electron transfer (PET) and charge recombination (CR) processes are ultrafast (within a few tens of ps) compared to static interactions, whereas for PFN/1,4-dicyanobenzene DCB systems, the PET takes place in a few hundreds of ps (217.50 ps), suggesting a diffusion-controlled PET process. In the latter case, the PFN+•-DCB-• radical ion pairs as the result of the PET from the PFN to DCB are clearly resolved, and they are long-lived. The slow CR process (in 30 ns time scales) suggests that PFN+• and DCB-• may already form separated radical ion pairs through the charge separation (CS) process, which recombine back to the initial state with a characteristic time constant of 30 ns. The advantage of the present positively charged polyfluorene used in this work is the control over the electrostatic interactions and electron transfers in non-covalent polyfluorene/quencher systems in DMSO solution.
Collapse
Affiliation(s)
- Amani A Alsam
- Department of Physical Science, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| |
Collapse
|
3
|
Pang X, Li Y, Wu X, Zhang B, Hao M, Zhu Y, Zhang Y, Qin C, Zhan H, Qin C. Phosphate ester functionalized fluorene-benzothiadiazole alternating copolymer/hydroxylated g-C 3N 4 heterojunctions for efficient hydrogen evolution under visible-light irradiation. J Colloid Interface Sci 2023; 652:1405-1416. [PMID: 37659309 DOI: 10.1016/j.jcis.2023.08.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
It is highly desirable to explore functionalized polymer semiconductor/g-C3N4 heterojunction photocatalysts with the tight interfacial connection for promoting the photogenerated electron-hole pair separation, improving the hydrophilicity, extending the visible light response and achieving the efficient visible light-driven H2 evolution. Herein, we synthesized novel poly[9,9-bis(3-ethyl phosphate propyl)fluorene-alt-benzothiadiazole] (PPFBT) with a phosphate ester on every repeating unit by the Suzuki polymerization and then fabricated PPFBT/hydroxylated g-C3N4 (PPFBT/CN-OH) heterojunctions via a surface hydroxyl-induced assembly process. The ratio-optimized 5PPFBT/CN-OH shows the hydrogen evolution activity of 2662.4 μmol·g-1·h-1, an 11.1-time enhancement compared to CN-OH. The improved photocatalytic activity is mainly attributed to the enhanced electron-hole pair separation due to the tight interfacial connection by hydrogen bond (P=O…H-O) and N…S interactions between PPFBT and CN-OH. It is verified that abundant phosphate ester groups of PPFBT improve the hydrophilicity and form coordination bonds with platinum (P=O:Pt) as a cocatalyst to facilitate water splitting for H2 evolution. It is also confirmed that the enhanced electron-hole pair separation is mainly dependent on the excited high-energy level electron transfer from CN-OH to PPFBT. This work provides a rational molecular design strategy for constructing efficient functionalized polymer semiconductor/g-C3N4 heterojunctions for sunlight-driven H2 evolution.
Collapse
Affiliation(s)
- Xulong Pang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Yong Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Xiaofu Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Bingmiao Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Ming Hao
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Yan Zhu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Yi Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Chuanjiang Qin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Hongmei Zhan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Chuanli Qin
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, People's Republic of China.
| |
Collapse
|
4
|
Turn-off fluorene-based chemosensor switch to Fe3+: Spectroscopic study, merit parameters, theoretical calculations, and its application in Brazilian ethanol fuel. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Wang W, Chen J, Wang D, Shen Y, Yang L, Zhang T, Ge J. Facile synthesis of biomass waste-derived fluorescent N, S, P co-doped carbon dots for detection of Fe 3+ ions in solutions and living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:789-795. [PMID: 33496288 DOI: 10.1039/d0ay02186e] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorescent carbon dots derived from natural biomass have received widespread attention in recent years due to their superior optical and chemical properties. In this work, we proposed a method to synthesize fluorescent nitrogen, sulfur, and phosphorus co-doped carbon dots (NSP-CDs) using biomass waste as a precursor. The blue emitting carbon dots were prepared from the seeds of green pepper, and Fe3+ ions could quench the fluorescence of NSP-CDs. Therefore, a fluorescent "turn-off" sensor based on NSP-CDs was constructed for the detection of Fe3+ ions. Further, NSP-CDs were evaluated as a fluorescent biosensor for the detection of Fe3+ in tap water and lake water samples, showing their potential value in practical applications. The cytotoxicity test further confirmed that NSP-CDs have good biocompatibility and can be extended to cell imaging and intracellular Fe3+ detection. The proposed method is simple, economical and green, which can meet the requirements of environmental monitoring and biological imaging.
Collapse
Affiliation(s)
- Weixia Wang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Jie Chen
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Dake Wang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yanmei Shen
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Like Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Tuo Zhang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Jia Ge
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
6
|
Zhang JH, Zhang ZT, Ou YJ, Zhang F, Meng J, Wang G, Fang ZL, Li Y. Red-emitting GSH-Cu NCs as a triplet induced quenched fluorescent probe for fast detection of thiol pollutants. NANOSCALE 2020; 12:19429-19437. [PMID: 32959864 DOI: 10.1039/d0nr04645k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thiol compounds exist widely on the Earth and have certain significance in the fields of the circulation of the sulfur element and industrial production. However, the odor and biological toxicity of thiol compounds make them pollutants that seriously threaten the environmental safety and the living quality of human. In this study, a novel triplet induced fluorescence "turn-off" strategy was designed for the detection of thiol pollutants via a glutathione-stabilized copper nanocluster (GSH-Cu NC) probe. The as-prepared GSH-Cu NCs not only have small size and good water-solubility, but also exhibit strong red-emitting fluorescence at 630 nm, which could be quenched quantitatively with the increase of the concentration of thiol pollutants. So they were employed to detect thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), 2-mercaptoethanol (ME) and 2-(diethylamino)ethanethiol (2-AT) in a wide linear range of 1-100 μM with detection limits of 0.73 μM, 0.43 μM, 0.37 μM, and 0.69 μM, respectively. This method was successfully applied to detect the above thiol pollutants in lake water with good recoveries. Moreover, their further application was also expanded as luminous test strips based on the excellent fluorescence characteristics of GSH-Cu NCs for fast real-time detection of thiol pollutants.
Collapse
Affiliation(s)
- Jun-Hua Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China. and State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Zi-Tong Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Yang-Jing Ou
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Fei Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China. and State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Jie Meng
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Gen Wang
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Zhao-Lin Fang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Yan Li
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| |
Collapse
|
7
|
Karimi M, Badiei A, Lashgari N, Mohammadi Ziarani G. A chromotropic acid modified SBA-15 as a highly sensitive fluorescent probe for determination of Fe3+ and I− ions in water. JOURNAL OF POROUS MATERIALS 2018; 25:137-146. [DOI: 10.1007/s10934-017-0427-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
8
|
Farhi A, Firdaus F, Shakir M. Design and application of a tripodal on–off type chemosensor for discriminative and selective detection of Fe2+ ions. NEW J CHEM 2018. [DOI: 10.1039/c8nj00214b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A simple and cost effective tris 2(amino ethyl) amine based chemosensor is synthesized via a single-step procedure.
Collapse
Affiliation(s)
- Atika Farhi
- Division of Inorganic Chemistry
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Farha Firdaus
- Chemistry Section
- Women's College
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Mohammad Shakir
- Division of Inorganic Chemistry
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| |
Collapse
|
9
|
Sepay N, Mallik S, Saha PC, Mallik AK. Design and synthesis of a new class of 2,4-thiazolidinedione based macrocycles suitable for Fe3+sensing. NEW J CHEM 2018. [DOI: 10.1039/c8nj01536h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three 2,4-thiazolidinedione based macrocycles, which are very good Fe3+sensors in aqueous-ethanol medium, have been synthesized. X-ray crystallography, DFT calculations and MEP analysis have been used for their structural confirmation and for understanding their behavior towards Fe3+.
Collapse
Affiliation(s)
- Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Sumitava Mallik
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Pranab C. Saha
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Asok K. Mallik
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| |
Collapse
|
10
|
Chatterjee S, Gohil H, Paital AR. Dual Functions of Selective Ferric Ion Detection and Removal by a Recyclable Fluorescence Active Multifunctional Silica Material and Toxic Dye Removal from Aqueous Solution. ChemistrySelect 2017. [DOI: 10.1002/slct.201700813] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sobhan Chatterjee
- Sobhan Chatterjee, Hardipsinh Gohil, Dr. Alok R. Paital, Salt and Marine Chemicals Division & Academy of Scientific and Innovative Research (AcSIR); CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg; Bhavnagar- 364002, Gujarat India
| | - Hardipsinh Gohil
- Sobhan Chatterjee, Hardipsinh Gohil, Dr. Alok R. Paital, Salt and Marine Chemicals Division & Academy of Scientific and Innovative Research (AcSIR); CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg; Bhavnagar- 364002, Gujarat India
| | - Alok Ranjan Paital
- Sobhan Chatterjee, Hardipsinh Gohil, Dr. Alok R. Paital, Salt and Marine Chemicals Division & Academy of Scientific and Innovative Research (AcSIR); CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg; Bhavnagar- 364002, Gujarat India
| |
Collapse
|
11
|
Hasan S, Hamedan NA, Razali AAA, Uyup NH, Zaki HM. Synthesis and characterization of p-dimethylaminobenzaldehyde benzoylthiourea and study towards selective and sensitive fluorescent sensor for detection of iron (III) cation in aqueous solution. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/172/1/012050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Magalhães CET, da Silva MM, Savedra RML, Siqueira MF. Anisotropic electron mobility in fluorene-PPV and fluorene-MEH-PPV. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1265679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Carlos E. T. Magalhães
- Laboratory of Molecular Simulation of Material, Department of Physics, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Marcio M. da Silva
- Laboratory of Molecular Simulation of Material, Department of Physics, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Ranylson M. L. Savedra
- Laboratory of Molecular Simulation of Material, Department of Physics, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Laboratory of Polymers and Electronic Properties of Materials, Department of Physics, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Melissa F. Siqueira
- Laboratory of Molecular Simulation of Material, Department of Physics, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Laboratory of Polymers and Electronic Properties of Materials, Department of Physics, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|
13
|
Lashgari N, Badiei A, Mohammadi Ziarani G. A Fluorescent Sensor for Al(III) and Colorimetric Sensor for Fe(III) and Fe(II) Based on a Novel 8-Hydroxyquinoline Derivative. J Fluoresc 2016; 26:1885-94. [PMID: 27444961 DOI: 10.1007/s10895-016-1883-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 07/12/2016] [Indexed: 01/19/2023]
Abstract
A novel 8-hydroxyquinoline-based fluorescent and colorimetric chemosensor was designed, synthesized and fully characterized. The sensor showed high selectivity and sensitivity toward Al(3+) over other tested cations in EtOH/H2O (1:99, v/v) medium. The increase in fluorescence intensity was linearly proportional to the concentration of Al(3+) with a detection limit of 7.38 × 10(-6) M. Moreover, the sensor exhibited an obvious color change from yellow to black in the presence of Fe(2+) and Fe(3+) in EtOH/THF (99:1, v/v) solution. The absorbance changes showed a linear response to iron ions with the detection limits of 4.24 × 10(-7) M and 5.60 × 10(-7) M for Fe(2+) and Fe(3+), respectively. Thus, this chemosensor provides a novel approach for selectively recognition of Al(3+), Fe(3+) and Fe(2+) among environmentally relevant metal ions.
Collapse
Affiliation(s)
- Negar Lashgari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran. .,Nanobiomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran.
| | | |
Collapse
|
14
|
Shen W, Qi Z, Yan L, Tian W, Cui X, Yao H, Sun Y. A novel cyclometalated Ir(iii) complex based luminescence intensity and lifetime sensor for Cu2+. RSC Adv 2016. [DOI: 10.1039/c5ra27189d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel green luminescent complex [Ir(dfppy)2(bpy-BiDPA)]PF6 was prepared for the reversible detection of Cu2+.
Collapse
Affiliation(s)
- Wei Shen
- College of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P.R. China
| | - Zhengjian Qi
- College of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P.R. China
| | - Liqiang Yan
- College of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P.R. China
| | - Wenwen Tian
- College of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P.R. China
| | - Xia Cui
- College of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P.R. China
| | - Hongtao Yao
- College of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P.R. China
| | - Yueming Sun
- College of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P.R. China
| |
Collapse
|
15
|
Erdemir S, Kocyigit O, Malkondu S. Detection of Hg 2+ ion in aqueous media by new fluorometric and colorimetric sensor based on triazole–rhodamine. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Hosseinzadeh R, Mohadjerani M, Pooryousef M, Eslami A, Emami S. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 144:53-60. [PMID: 25748592 DOI: 10.1016/j.saa.2015.02.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/30/2014] [Accepted: 02/14/2015] [Indexed: 05/03/2023]
Abstract
Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (K(a)=3582.88 M(-1)) and selectivity for fructose over glucose at pH=7.4. The sensor 1 showed a linear response toward d-fructose in the concentrations ranging from 2.5×10(-5) to 4×10(-4) mol L(-1) with the detection limit of 1.3×10(-5) mol L(-1).
Collapse
Affiliation(s)
- Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Maryam Mohadjerani
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Mona Pooryousef
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Abbas Eslami
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
17
|
Saleem M, Lee KH. Optical sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv 2015. [DOI: 10.1039/c5ra11388a] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this review, we cover the recent developments in fluorogenic and chromogenic sensors for Cu2+, Fe2+/Fe3+, Zn2+and Hg2+.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry
- Kongju National University
- Gongju
- Republic of Korea
| | - Ki Hwan Lee
- Department of Chemistry
- Kongju National University
- Gongju
- Republic of Korea
| |
Collapse
|