1
|
Wang J, Yin J, Imtiaz H, Wang H, Li Y. Enantioselective Total Synthesis of (-)-Cyathin B 2: A Desymmetric Double-Allylboration Approach. J Am Chem Soc 2024; 146:25078-25087. [PMID: 39196853 DOI: 10.1021/jacs.4c08042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
A powerful Pt-catalyzed asymmetric diboration/desymmetric double-allylboration cascade reaction has been developed for the construction of synthetically useful, densely functionalized hydrindanes with five stereocenters, including three quaternary ones, in good yields and excellent enantiomeric excess (ee) values within a single synthetic operation. A unified strategy utilizing this key tandem methodology enabled the concise asymmetric total synthesis of cyathane diterpene (-)-Cyathin B2 in 14 steps from commercially available starting materials, thereby demonstrating its remarkable potential in the synthesis of hydrindane-containing natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Jianping Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiacheng Yin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hayatullah Imtiaz
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hongyu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Yang H, Zhang J, Zhang S, Xue Z, Hu S, Chen Y, Tang Y. Chiral Bisphosphine-Catalyzed Asymmetric Staudinger/aza-Wittig Reaction: An Enantioselective Desymmetrizing Approach to Crinine-Type Amaryllidaceae Alkaloids. J Am Chem Soc 2024; 146:14136-14148. [PMID: 38642063 DOI: 10.1021/jacs.4c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
An unprecedented chiral bisphosphine-catalyzed asymmetric Staudinger/aza-Wittig reaction of 2,2-disubstituted cyclohexane-1,3-diones is reported, enabling the facile access of a broad range of cis-3a-arylhydroindoles in high yields with excellent enantioselectivities. The key to the success of this work relies on the first application of chiral bisphosphine DuanPhos to the asymmetric Staudinger/aza-Wittig reaction. An effective reductive system has been established to address the challenging PV═O/PIII redox cycle associated with the chiral bisphosphine catalyst. In addition, comprehensive experimental and computational investigations were carried out to elucidate the mechanism of the asymmetric reaction. Leveraging the newly developed chemistry, the enantioselective total syntheses of several crinine-type Amaryllidaceae alkaloids, including (+)-powelline, (+)-buphanamine, (+)-vittatine, and (+)-crinane, have been accomplished with remarkable conciseness and efficiency.
Collapse
Affiliation(s)
- Hongzhi Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Sen Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Zhengwen Xue
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shengkun Hu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yi Chen
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
4
|
Yu H, Zhang J, Ma D, Li X, Xu T. Enantioselective Total Syntheses of (-)-Caulamidine D and (-)-Isocaulamidine D and Their Absolute Configuration Reassignment. J Am Chem Soc 2023; 145:22335-22340. [PMID: 37792337 DOI: 10.1021/jacs.3c08714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The first enantioselective total syntheses of (-)-caulamidine D (5) and (-)-isocaulamidine D (6) were accomplished. Their absolute configurations were unambiguously elucidated through X-ray crystallography. The isolated natural samples of both 5 and 6 are determined to be the TFA salts instead of the neutral forms. It took 16 steps (longest linear sequence) to divergently access both 5 and 6 following a unified strategy. The key reactions include (1) development and application of an asymmetric Meerwein-Eschenmoser-Claisen rearrangement to construct the challenging C10, C23 consecutive stereocenters and (2) application of a cascade 6-exo-dig/6-exo-tet amine/nitrile cyclization reaction.
Collapse
Affiliation(s)
- Haiyong Yu
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, MOE, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junhao Zhang
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, MOE, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Dongxu Ma
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, MOE, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaotong Li
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, MOE, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tao Xu
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, MOE, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Marine Natural Products, Laoshan Lab, Qingdao 266237, China
| |
Collapse
|
5
|
Shin I, Jang H, Kwak SY, Park Y, Lee D, Kim H, Kim D. Highly Stereodivergent Construction of a C 2-Symmetric cis, cis- and trans, trans-2,6-Dioxabicyclo[3.3.0]octane Framework by Double Intramolecular Amide Enolate Alkylation: Total Synthesis of (+)-Laurenidificin and (+)-Aplysiallene. Org Lett 2022; 24:8780-8785. [PMID: 36449560 DOI: 10.1021/acs.orglett.2c03494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The highly stereoselective construction of C2-symmetric cis,cis- and trans,trans-2,6-dioxabicyclo[3.3.0]octane (fused bis-tetrahydrofuran) skeletons 4a and 4b has been accomplished via a novel stereodivergent double intramolecular amide enolate alkylation of common cyclization substrate 5 through the judicious choice of "chelate" versus crown ether-promoted "nonchelate" control. Application of this methodology has provided access to substrate-controlled concise total syntheses of (+)-laurenidificin (3) and (+)-aplysiallene (ent-2), which possess cis/cis- and trans/trans-fused bis-tetrahydrofuran cores, respectively.
Collapse
Affiliation(s)
- Iljin Shin
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
| | - Hongjun Jang
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
| | - Soo Yeon Kwak
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
| | - Youngjik Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
| | - Dongjoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
| | - Hyoungsu Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
| | - Deukjoon Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Asano K, Matsubara S. Organocatalytic Access to Tetrasubstituted Chiral Carbons Integrating Functional Groups. CHEM REC 2022:e202200200. [PMID: 36163471 DOI: 10.1002/tcr.202200200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Three-dimensional organic structures containing sp3 carbons bearing four non-hydrogen substituents can provide drug-like molecules. Although such complex structures are challenging targets in synthetic organic chemistry, efficient synthetic approaches will open a new chemical space for pharmaceutical candidates. This review provides an account of our recent achievements in developing organocatalytic approaches to attractive molecular platforms based on optically active sp3 carbons integrating four different functional groups. These methodologies include asymmetric cycloetherification and cyanation of multifunctional ketones, both of which take advantage of the mild characteristics of organocatalytic activation. Enzyme-like but non-enzymatic organocatalytic systems can be used to precisely manufacture molecules containing complex chiral structures without substrate specificity problems. In addition, these catalytic systems control not only stereoselectivity but also site-selectivity and do not induce side reactions even from substrates with rich functionality.
Collapse
Affiliation(s)
- Keisuke Asano
- Institute for Catalysis, Hokkaido University Sapporo, Hokkaido, 001-0021, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Kyotodaigaku-Katsura, Nishikyo, Kyoto, 615-8510, Japan
| |
Collapse
|
7
|
Abstract
We report a total synthesis of the Myrioneuron alkaloid myrioneurinol enabled by the recognition of hidden symmetry within its polycyclic structure. Our approach traces myrioneurinol's complex framework back to a symmetrical diketone precursor, a double reductive amination of which forges its central piperidine unit. By employing an inexpensive chiral amine in this key desymmetrizing event, four stereocenters of the natural product including the core quaternary stereocenter are set in an absolute sense, providing the first asymmetric entry to this target. Other noteworthy strategic maneuvers include utilizing a bicyclic alkene as a latent cis-1,3-bis(hydroxymethyl) synthon and a topologically controlled alkene hydrogenation. Overall, our synthesis proceeds in 18 steps and ∼1% yield from commercial materials.
Collapse
Affiliation(s)
- Jake M Aquilina
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Myles W Smith
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
8
|
Wu X, Luan B, Zhao W, He F, Wu XY, Qu J, Chen Y. Catalytic Desymmetric Dicarbofunctionalization of Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202111598. [PMID: 35286744 DOI: 10.1002/anie.202111598] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 12/16/2022]
Abstract
The construction of multi-stereocenters by a transition metal-catalyzed cross-coupling reaction is a major challenge. The catalytic desymmetric functionalization of unactivated alkenes remains largely unexplored. Herein, we disclose -a desymmetric dicarbofunctionalization of 1,6-dienes via a nickel-catalyzed reductive cross-coupling reaction. The leverage of the underdeveloped chiral 8-Quinox enables the Ni-catalyzed desymmetric carbamoylalkylation of both unactivated mono- and disubstituted alkenes to form pyrrolidinone bearing two nonadjacent stereogenic centers in high enantio- and stereoselectivitives with broad functional-group tolerance. The synthetic application of pyrrolidinones allows the rapid access to complex chiral fused-heterocycles.
Collapse
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenyu Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
9
|
Wu X, Luan B, Zhao W, He F, Wu X, Qu J, Chen Y. Catalytic Desymmetric Dicarbofunctionalization of Unactivated Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Wenyu Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xin‐Yan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
10
|
Horwitz MA. Local desymmetrization as an engine of stereochemical elaboration in total synthesis. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Tadiparthi K, Anand P, Sakirolla R, Gupta TP, Jadhav KA, Kishore Das S, Singh Yadav J. Desymmetrisation of meso-2,4-Dimethyl-8-Oxabicyclo[3.2.1]-Oct-6-Ene-3-Ol and its Application in Natural Product Syntheses. CHEM REC 2021; 22:e202100286. [PMID: 34894063 DOI: 10.1002/tcr.202100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022]
Abstract
The compounds containing chiral centers and different functional groups serve as magnificent building blocks for the preparation of various natural products that are having immense biological activity. "Dimethyl-8-oxa-bicyclo[3.2.1]oct-6-en-3-ol" is one of the wonderful synthons to construct multiple stereo centers at a time during the asymmetric synthesis. In this account, we discuss our research efforts toward the synthesis of various simple and complex natural products from the past three decades (1995-2020) by using dimethyl-8-oxa-bicyclo[3.2.1]oct-6-en-3-ol as a synthon. Moreover, the synthetic utility of this starting material was investigated and well demonstrated. Further, we executed the desymmetrization of dimethyl-8-oxa-bicyclo[3.2.1]oct-6-en-3-ol by hydroboration to get different chiral centers. After obtaining the stereocenters, we could manage either the fragment, formal or total synthesis of natural products, by simple protection and deprotection sequence followed by C-C bond formation steps.
Collapse
Affiliation(s)
- Krishnaji Tadiparthi
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, 560029, India.,Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Pragya Anand
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, 560029, India
| | - Raghavendra Sakirolla
- Department of Chemistry, Central University of Karnataka, Gulbarga, Karnataka, 585367, India.,Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - T Prakash Gupta
- School of Science, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Krishna A Jadhav
- School of Science, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Sukant Kishore Das
- School of Science, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Jhillu Singh Yadav
- Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,School of Science, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| |
Collapse
|
13
|
Abstract
Hikizimycin (1) is a potent anthelmintic and antibacterial natural product. The core 4-amino-4-deoxyundecose sugar (hikosamine) of 1 consists of an 11-carbon linear chain substituted with one amino group and 10 hydroxy groups. The C1 and C6O positions of the 10 contiguous stereocenters are further appended by a cytosine base and a 3-amino-3-deoxyglucose sugar (kanosamine), respectively. Since the structural determination in the early 1970s, synthetic chemists have been attracted by this exceedingly complex structure and have investigated the full chemical construction of 1. These synthetic efforts culminated in four syntheses of the protected hikosamines and two total syntheses of 1. In this Perspective, we summarize the strategies and tactics utilized in these syntheses to showcase the evolution of modern natural product synthesis.
Collapse
Affiliation(s)
- Haruka Fujino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Wang G, Zhang M, Guan Y, Zhang Y, Hong X, Wei C, Zheng P, Wei D, Fu Z, Chi YR, Huang W. Desymmetrization of Cyclic 1,3-Diketones under N-Heterocyclic Carbene Organocatalysis: Access to Organofluorines with Multiple Stereogenic Centers. RESEARCH 2021; 2021:9867915. [PMID: 34549186 PMCID: PMC8422277 DOI: 10.34133/2021/9867915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
Symmetric 1,3-diketones with fluorine or fluorinated substituents on the prochiral carbon remain to be established. Herein, we have developed a novel prochiral fluorinated oxindanyl 1,3-diketone and successfully applied these substrates in carbene-catalyzed asymmetric desymmetrization. Accordingly, a versatile strategy for asymmetric generation of organofluorines with fluorine or fluorinated methyl groups has been developed. Multiple stereogenic centers were selectively constructed with satisfactory outcomes. Structurally diverse enantioenriched organofluorines were generated with excellent results in terms of yields, diastereoselectivities, and enantioselectivities. Notably, exchanging fluorinated methyl groups to fluorine for this prochiral 1,3-diketones leads to switchable stereoselectivity. Mechanistic aspects and origin of stereoselectivity were studied by DFT calculations. Notably, some of the prepared organofluorines demonstrated competitive antibacterial activities.
Collapse
Affiliation(s)
- Guanjie Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Min Zhang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yezhi Guan
- School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ye Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xianfang Hong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chenlong Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Pengcheng Zheng
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Donghui Wei
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.,Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
15
|
Hu XD, Chen ZH, Zhao J, Sun RZ, Zhang H, Qi X, Liu WB. Enantioselective Synthesis of α-All-Carbon Quaternary Center-Containing Carbazolones via Amino-palladation/Desymmetrizing Nitrile Addition Cascade. J Am Chem Soc 2021; 143:3734-3740. [DOI: 10.1021/jacs.1c00840] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xu-Dong Hu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Zi-Hao Chen
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jing Zhao
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Rui-Ze Sun
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Hui Zhang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiaotian Qi
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Asano K. Multipoint Recognition of Molecular Conformations with Organocatalysts for Asymmetric Synthetic Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Keisuke Asano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
17
|
Murata R, Matsumoto A, Asano K, Matsubara S. Desymmetrization of gem-diols via water-assisted organocatalytic enantio- and diastereoselective cycloetherification. Chem Commun (Camb) 2020; 56:12335-12338. [PMID: 32896841 DOI: 10.1039/d0cc05509c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The first desymmetrization of gem-diols forming chiral hemiketal carbons was accomplished via organocatalytic enantio- and diastereoselective cycloetherification, which afforded optically active tetrahydropyrans containing a chiral hemiketal carbon and tetrasubstituted stereocenters bearing synthetically versatile fluorinated groups. The desymmetrization of silanediols was also demonstrated as an asymmetric route to chiral silicon centers.
Collapse
Affiliation(s)
- Ryuichi Murata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan.
| | | | | | | |
Collapse
|
18
|
Lenhof J, Hutter M, Huch V, Jauch J. Towards the Total Synthesis of Jerangolids – Synthesis of an Advanced Intermediate for the Pharmacophore Substructure. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julian Lenhof
- Organic Chemistry II Saarland University P.O. Box 111550 66041 Saarbrücken Germany
| | - Michael Hutter
- Center for Bioinformatics Saarland University P.O. Box 111550 66041 Saarbrücken Germany
| | - Volker Huch
- General and Inorganic Chemistry Saarland University P.O. Box 111550 66041 Saarbrücken Germany
| | - Johann Jauch
- Organic Chemistry II Saarland University P.O. Box 111550 66041 Saarbrücken Germany
| |
Collapse
|
19
|
Wada Y, Murata R, Fujii Y, Asano K, Matsubara S. Enantio- and Diastereoselective Construction of Contiguous Tetrasubstituted Chiral Carbons in Organocatalytic Oxadecalin Synthesis. Org Lett 2020; 22:4710-4715. [DOI: 10.1021/acs.orglett.0c01501] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuuki Wada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Ryuichi Murata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Yuki Fujii
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Keisuke Asano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
20
|
Yu ZL, Cheng YF, Jiang NC, Wang J, Fan LW, Yuan Y, Li ZL, Gu QS, Liu XY. Desymmetrization of unactivated bis-alkenes via chiral Brønsted acid-catalysed hydroamination. Chem Sci 2020; 11:5987-5993. [PMID: 34094089 PMCID: PMC8159283 DOI: 10.1039/d0sc00001a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although great success has been achieved in catalytic asymmetric hydroamination of unactivated alkenes using transition metal catalysis and organocatalysis, the development of catalytic desymmetrising hydroamination of such alkenes remains a tough challenge in terms of attaining a high level of stereocontrol over both remote sites and reaction centers at the same time. To address this problem, here we report a highly efficient and practical desymmetrising hydroamination of unactivated alkenes catalysed by chiral Brønsted acids with both high diastereoselectivity and enantioselectivity. This method features a remarkably broad alkene scope, ranging from mono-substituted and gem-/1,2-disubstituted to the challenging tri- and tetra-substituted alkenes, to provide access to a variety of diversely functionalized chiral pyrrolidines bearing two congested tertiary or quaternary stereocenters with excellent efficiency under mild and user-friendly synthetic conditions. The key to success is indirect activation of unactivated alkenes by chiral Brønsted acids via a concerted hydroamination mechanism.
Collapse
Affiliation(s)
- Zhang-Long Yu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Yong-Feng Cheng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Na-Chuan Jiang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Jian Wang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Li-Wen Fan
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Yue Yuan
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology Shenzhen 518055 China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology Shenzhen 518055 China .,Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
21
|
Sietmann J, Wahl JM. Enantioselective Desymmetrization of Cyclobutanones: A Speedway to Molecular Complexity. Angew Chem Int Ed Engl 2020; 59:6964-6974. [PMID: 31550067 PMCID: PMC7984208 DOI: 10.1002/anie.201910767] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Indexed: 12/16/2022]
Abstract
Cyclobutanones hold a privileged role in enantioselective desymmetrization because their inherent ring strain allows for a variety of unusual reactions to occur. Current strategies include α-functionalization, rearrangement, and C-C bond activation to directly convert cyclobutanones into a wide range of enantiomerically enriched compounds, including many biologically significant scaffolds. This Minireview provides an overview of state-of-the-art methods that generate complexity from prochiral cyclobutanones in a single operation.
Collapse
Affiliation(s)
- Jan Sietmann
- Westfälische Wilhelms-Universität MünsterInstitute of Organic ChemistryCorrensstrasse 4048149MünsterGermany
| | - Johannes M. Wahl
- Westfälische Wilhelms-Universität MünsterInstitute of Organic ChemistryCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
22
|
Xu K, Ye J, Liu H, Shen J, Liu D, Zhang W. Pd‐Catalyzed Asymmetric Allylic Substitution Annulation Using Enolizable Ketimines as Nucleophiles: An Alternative Approach to Chiral Tetrahydroindoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kai Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Jianxun Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Hao Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Jiefeng Shen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative MoleculesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| |
Collapse
|
23
|
Sietmann J, Wiest JM. Enantioselektive Desymmetrisierung von Cyclobutanonen: Eine Schnellstraße zu molekularer Komplexität. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201910767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jan Sietmann
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| | - Johannes M. Wiest
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
24
|
Patel K, Mishra UK, Mukhopadhyay D, Ramasastry SSV. Beyond the Corey-Chaykovsky Reaction: Synthesis of Unusual Cyclopropanoids via Desymmetrization and Thereof. Chem Asian J 2019; 14:4568-4571. [PMID: 31513351 DOI: 10.1002/asia.201901108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Indexed: 01/11/2023]
Abstract
Desymmetrization-based protocols for the synthesis of highly functionalized indeno-spirocyclopropanes and cyclopropa-fused indanes have been established through unexpected reactions triggered by the Corey-Chaykovsky reagent. These structures were further elaborated in one step to privileged scaffolds such as fluorenones, indenones, and naphthaphenones. For instance, an acid-catalyzed transformation of indeno-spirocyclopropanes provided fluorenones via a homo-Nazarov-type cyclization, and naphthaphenones were obtained via an acid-catalyzed cyclopropane ring-opening/retro-Michael sequence.
Collapse
Affiliation(s)
- Kaushalendra Patel
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - Uttam K Mishra
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - Dipto Mukhopadhyay
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - S S V Ramasastry
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| |
Collapse
|
25
|
Wei Q, Cai J, Hu XD, Zhao J, Cong H, Zheng C, Liu WB. Enantioselective Access to γ-All-Carbon Quaternary Center-Containing Cyclohexanones by Palladium-Catalyzed Desymmetrization. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qiang Wei
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Jinhui Cai
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Xu-Dong Hu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Jing Zhao
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Hengjiang Cong
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
26
|
Cai J, Wang ZK, Usman M, Lu ZW, Hu XD, Liu WB. Enantioselective Synthesis of β-Quaternary Carbon-Containing Chromanes and 3,4-Dihydropyrans via Cu-Catalyzed Intramolecular C-O Bond Formation. Org Lett 2019; 21:8852-8856. [PMID: 31642679 DOI: 10.1021/acs.orglett.9b03549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper-catalyzed efficient enantioselective construction of chiral quaternary carbon-containing chromanes and 3,4-dihydropyrans is reported. The desymmetric C-O coupling is enabled by a chiral dimethylcyclohexane-1,2-diamine ligand and provides the desired products in good yields with high enantioselectivities. This method presents a broad substrate scope and is applicable to diversely substituted aryl bromides and alkenyl bromides. The application is demonstrated by a gram-scale synthesis and derivatization of the products toward valuable building blocks.
Collapse
Affiliation(s)
- Jinhui Cai
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , China
| | - Zhen-Kai Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , China
| | - Muhammad Usman
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , China
| | - Zhi-Wu Lu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , China
| | - Xu-Dong Hu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , China
| | - Wen-Bo Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , China
| |
Collapse
|
27
|
Miyagawa T, Inuki S, Oishi S, Ohno H. Construction of Quaternary Carbon Stereocenter of α-Tertiary Amine through Remote C-H Functionalization of Tris Derivatives: Enantioselective Total Synthesis of Myriocin. Org Lett 2019; 21:5485-5490. [PMID: 31287325 DOI: 10.1021/acs.orglett.9b01778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We describe the development of a strategy for the construction of the quaternary carbon stereocenter of α-tertiary amines. This strategy highlights a site-selective C-H functionalization involving an alkoxy-radical-triggered 1,5-hydrogen transfer (1,5-HAT) reaction of a conformationally fixed spiro-compound derived from trishydroxymethylaminomethane (Tris). The utilization of this strategy enabled an enantioselective total synthesis of myriocin, a naturally occurring sphingosine analog that displays potent immunosuppressive activity.
Collapse
Affiliation(s)
- Takashi Miyagawa
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| |
Collapse
|
28
|
Kurimoto Y, Nasu T, Fujii Y, Asano K, Matsubara S. Asymmetric Cycloetherification of in Situ Generated Cyanohydrins through the Concomitant Construction of Three Chiral Carbon Centers. Org Lett 2019; 21:2156-2160. [PMID: 30869909 DOI: 10.1021/acs.orglett.9b00462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The organocatalytic enantio- and diastereoselective cycloetherification of in situ generated cyanohydrins through the concomitant construction of three chiral carbon centers is reported. This protocol facilitates the concise synthesis of optically active tetrahydropyran derivatives, which are ubiquitous scaffolds found in various bioactive compounds, through the simultaneous construction of multiple bonds and stereogenic centers, including tetrasubstituted chiral carbons. The resulting products also contain multiple synthetically important functional groups, which expand their possible usefulness as chiral building blocks.
Collapse
Affiliation(s)
- Yosuke Kurimoto
- Department of Material Chemistry, Graduate School of Engineering , Kyoto University , Kyotodaigaku-Katsura, Nishikyo , Kyoto 615-8510 , Japan
| | - Teruhisa Nasu
- Department of Material Chemistry, Graduate School of Engineering , Kyoto University , Kyotodaigaku-Katsura, Nishikyo , Kyoto 615-8510 , Japan
| | - Yuki Fujii
- Department of Material Chemistry, Graduate School of Engineering , Kyoto University , Kyotodaigaku-Katsura, Nishikyo , Kyoto 615-8510 , Japan
| | - Keisuke Asano
- Department of Material Chemistry, Graduate School of Engineering , Kyoto University , Kyotodaigaku-Katsura, Nishikyo , Kyoto 615-8510 , Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering , Kyoto University , Kyotodaigaku-Katsura, Nishikyo , Kyoto 615-8510 , Japan
| |
Collapse
|
29
|
Xu K, Liu H, Hou Y, Shen J, Liu D, Zhang W. A Pd-catalyzed asymmetric allylic substitution cascade via an asymmetric desymmetrization for the synthesis of bicyclic dihydrofurans. Chem Commun (Camb) 2019; 55:13295-13298. [DOI: 10.1039/c9cc07204g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chiral bicyclic dihydrofurans bearing two vicinal carbon stereocenters have been synthesized in high yields and with up to 97% ee via a Pd-catalyzed asymmetric allylic substitution cascade and an asymmetric desymmetrization process.
Collapse
Affiliation(s)
- Kai Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- 800 Dongchuan Road
- Shanghai 200240
| | - Hao Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- 800 Dongchuan Road
- Shanghai 200240
| | - Yilin Hou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- 800 Dongchuan Road
- Shanghai 200240
| | - Jiefeng Shen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- 800 Dongchuan Road
- Shanghai 200240
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- 800 Dongchuan Road
- Shanghai 200240
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- 800 Dongchuan Road
- Shanghai 200240
| |
Collapse
|
30
|
Kawamata T, Yamaguchi A, Nagatomo M, Inoue M. Convergent Total Synthesis of Asimicin via Decarbonylative Radical Dimerization. Chemistry 2018; 24:18907-18912. [DOI: 10.1002/chem.201805317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Takahiro Kawamata
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-003 Japan
| | - Akinori Yamaguchi
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-003 Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-003 Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-003 Japan
| |
Collapse
|
31
|
Suzuki T. Recent Advances in the Desymmetrization of meso-Diols. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takeyuki Suzuki
- The Institute of Scientific and Industrial Research (ISIR), Osaka University
| |
Collapse
|
32
|
Lu Z, Zhang X, Guo Z, Chen Y, Mu T, Li A. Total Synthesis of Aplysiasecosterol A. J Am Chem Soc 2018; 140:9211-9218. [PMID: 29939021 DOI: 10.1021/jacs.8b05070] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aplysiasecosterol A (1) is a structurally unusual 9,11-secosteroid isolated from the sea hare Aplysia kurodai. We have accomplished the first and asymmetric total synthesis of 1 in a convergent fashion. The left-hand segment bearing three adjacent stereocenters was constructed through desymmetrizing reduction, ketalization, and radical cyclization. A strategy of asymmetric 2-bromoallylation followed by spontaneous desymmetrizing lactolization enabled a more expeditious access to this segment. The right-hand segment was prepared through two different approaches: one featuring Myers alkylation and Suzuki-Miyaura coupling and the other relying upon Aggarwal lithiation-borylation and Zweifel-Evans olefination. The two fragments were coupled by a Reformatsky type reaction. The three consecutive stereocenters embedded in the central domain of 1 were generated by an iron-mediated, hydrogen atom transfer based radical cyclization reaction.
Collapse
Affiliation(s)
- Zhaohong Lu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Xiang Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Zhicong Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Yu Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Tong Mu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
33
|
Recent examples of the use of biocatalysts with high accessibility and availability in natural product synthesis. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Goh SS, Guduguntla S, Kikuchi T, Lutz M, Otten E, Fujita M, Feringa BL. Desymmetrization of meso-Dibromocycloalkenes through Copper(I)-Catalyzed Asymmetric Allylic Substitution with Organolithium Reagents. J Am Chem Soc 2018; 140:7052-7055. [PMID: 29790736 PMCID: PMC6002767 DOI: 10.1021/jacs.8b02992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
highly regio- and enantioselective (up to >99:1 dr, up to 99:1
er) desymmetrization of meso-1,4-dibromocycloalk-2-enes
using asymmetric allylic substitution with organolithium reagents
to afford enantioenriched bromocycloalkenes (ring size of 5 to 7)
has been achieved. The cycloheptene products undergo an unusual ring
contraction. The synthetic versatility of this Cu(I)-catalyzed reaction
is demonstrated by the concise stereocontrolled preparation of cyclic
amino alcohols, which are privileged chiral structures in natural
products and pharmaceuticals and widely used in synthesis and catalysis.
Collapse
Affiliation(s)
- Shermin S Goh
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.,Institute of Materials Research and Engineering , 2 Fusionopolis Way, Innovis #08-03 , Singapore 138634
| | - Sureshbabu Guduguntla
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Takashi Kikuchi
- Department of Applied Chemistry , University of Tokyo , 7-3-1, Hongo , Bukyo-ku, Tokyo 113-8656 , Japan.,Rigaku Corporation , 3-9-12 Matsubara-cho , Akishima-shi, Tokyo 196-8666 , Japan
| | - Martin Lutz
- Bijvoet Center for Biomolecular Research , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Makoto Fujita
- Department of Applied Chemistry , University of Tokyo , 7-3-1, Hongo , Bukyo-ku, Tokyo 113-8656 , Japan
| | - Ben L Feringa
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
35
|
|
36
|
Matías DM, Johnson JS. Synthesis and Desymmetrization of meso Tricyclic Systems Derived from Benzene Oxide. J Org Chem 2018; 83:4859-4866. [PMID: 29634261 DOI: 10.1021/acs.joc.8b00523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ozonolysis of the Diels-Alder adducts derived from benzene oxides and N-alkylmaleimides resulted in fully substituted, meso bicyclic systems bearing six contiguous stereocenters, isolated as diols upon reductive workup with NaBH4. Variation in the workup allowed for isolation of two different diastereoisomers, through double epimerization of the imide stereocenters. Desymmetrization of the resulting meso diols via asymmetric nucleophilic epoxide opening and acylation reactions provided access to highly substituted, enantioenriched fused rings.
Collapse
Affiliation(s)
- Desirée M Matías
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| | - Jeffrey S Johnson
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| |
Collapse
|
37
|
Inai M, Asakawa T, Kan T. Total synthesis of natural products using a desymmetrization strategy. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Perrotta D, Wang MM, Waser J. Lewis Acid Catalyzed Enantioselective Desymmetrization of Donor-Acceptor meso
-Diaminocyclopropanes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Daniele Perrotta
- Laboratory of Catalysis and Organic Synthesis; Ecole Polytechnique Fédérale de Lausanne; EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Ming-Ming Wang
- Laboratory of Catalysis and Organic Synthesis; Ecole Polytechnique Fédérale de Lausanne; EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis; Ecole Polytechnique Fédérale de Lausanne; EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
39
|
Perrotta D, Wang MM, Waser J. Lewis Acid Catalyzed Enantioselective Desymmetrization of Donor-Acceptor meso
-Diaminocyclopropanes. Angew Chem Int Ed Engl 2018; 57:5120-5123. [DOI: 10.1002/anie.201800494] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Daniele Perrotta
- Laboratory of Catalysis and Organic Synthesis; Ecole Polytechnique Fédérale de Lausanne; EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Ming-Ming Wang
- Laboratory of Catalysis and Organic Synthesis; Ecole Polytechnique Fédérale de Lausanne; EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis; Ecole Polytechnique Fédérale de Lausanne; EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
40
|
Guerola M, Escolano M, Alzuet-Piña G, Gómez-Bengoa E, Ramírez de Arellano C, Sánchez-Roselló M, del Pozo C. Synthesis of substituted piperidines by enantioselective desymmetrizing intramolecular aza-Michael reactions. Org Biomol Chem 2018; 16:4650-4658. [PMID: 29911720 DOI: 10.1039/c8ob01139g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An organocatalytic enantioselective intramolecular aza-Michael reaction has been described for the first time in a desymmetrization process employing substrates different from cyclohexadienones.
Collapse
Affiliation(s)
- Marta Guerola
- Department of Organic Chemistry
- University of Valencia
- E-46100-Burjassot
- Spain
| | - Marcos Escolano
- Department of Organic Chemistry
- University of Valencia
- E-46100-Burjassot
- Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry
- University of Valencia
- E-46100-Burjassot
- Spain
| | - Enrique Gómez-Bengoa
- Department of Organic Chemistry I
- University of Basque Country (UPV-EHU)
- E-20018 Donostia-San Sebastián
- Spain
| | | | | | - Carlos del Pozo
- Department of Organic Chemistry
- University of Valencia
- E-46100-Burjassot
- Spain
| |
Collapse
|
41
|
Boufroura H, Sevaille L, Gigant N, Drège E, Joseph D. The dual reactivity of Weinreb amides applied to the late-stage divergent functionalisation of meso pyrrolidines. NEW J CHEM 2018. [DOI: 10.1039/c8nj01975d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dual reactivity of Weinreb amides was exploited to prepare diversified symmetrical and dissymmetrical 2,5-disubstituted pyrrolidines from simple building blocks.
Collapse
Affiliation(s)
- Hamza Boufroura
- BioCIS
- Université Paris-Sud
- CNRS
- Université Paris-Saclay
- F-92296 Châtenay-Malabry
| | - Laurent Sevaille
- BioCIS
- Université Paris-Sud
- CNRS
- Université Paris-Saclay
- F-92296 Châtenay-Malabry
| | - Nicolas Gigant
- BioCIS
- Université Paris-Sud
- CNRS
- Université Paris-Saclay
- F-92296 Châtenay-Malabry
| | - Emmanuelle Drège
- BioCIS
- Université Paris-Sud
- CNRS
- Université Paris-Saclay
- F-92296 Châtenay-Malabry
| | - Delphine Joseph
- BioCIS
- Université Paris-Sud
- CNRS
- Université Paris-Saclay
- F-92296 Châtenay-Malabry
| |
Collapse
|
42
|
Park KH(K, Chen DYK. A desymmetrization-based approach to morphinans: application in the total synthesis of oxycodone. Chem Commun (Camb) 2018; 54:13018-13021. [DOI: 10.1039/c8cc07667g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report a total synthesis of the pharmacologically significant morphinan alkaloid, oxycodone.
Collapse
Affiliation(s)
| | - David Y.-K. Chen
- Department of Chemistry
- Seoul National University
- Seoul 08826
- South Korea
| |
Collapse
|
43
|
|
44
|
Nagao Y, Hisanaga T, Egami H, Kawato Y, Hamashima Y. Desymmetrization of Bisallylic Amides through Catalytic Enantioselective Bromocyclization with BINAP Monoxide. Chemistry 2017; 23:16758-16762. [PMID: 29044749 DOI: 10.1002/chem.201704847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 01/12/2023]
Abstract
We report the first desymmetrization of bisallylic amides by enantioselective bromocyclization with BINAP monoxide as a catalyst. Depending upon the substitution pattern of the alkene moieties, densely functionalized, optically active oxazoline or dihydrooxazine compounds were obtained in a highly stereoselective manner. The remaining alkene moiety was subjected to various functional group manipulations to afford a diverse array of chiral molecules with multiple stereogenic centers.
Collapse
Affiliation(s)
- Yoshihiro Nagao
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Tatsunari Hisanaga
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiromichi Egami
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yuji Kawato
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
45
|
Chandra Sahoo S, Joshi M, Chandra Pan S. Diastereoselective Desymmetrization of Prochiral Cyclopentenediones via Cycloaddition Reaction with N-Phenacylbenzothiazolium Bromides. J Org Chem 2017; 82:12763-12770. [DOI: 10.1021/acs.joc.7b01964] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Subas Chandra Sahoo
- Department
of Chemistry, Indian Institute of Technology Guwahati, North
Guwahati, Assam 781039, India
| | - Mayank Joshi
- Department
of Chemistry, Indian Institute of Science Education and Research, Mohali, Punjab 140306, India
| | - Subhas Chandra Pan
- Department
of Chemistry, Indian Institute of Technology Guwahati, North
Guwahati, Assam 781039, India
| |
Collapse
|
46
|
Affiliation(s)
- Yu Yoshii
- Department of Chemistry; Seoul National University; Gwanak-1 Gwanak-ro, Gwanak-gu Seoul 151-742 South Korea
- Graduate School of Pharmaceutical Sciences; Tohoku University; Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences; Tohoku University; Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - David Y.-K. Chen
- Department of Chemistry; Seoul National University; Gwanak-1 Gwanak-ro, Gwanak-gu Seoul 151-742 South Korea
| |
Collapse
|
47
|
Yoshii Y, Tokuyama H, Chen DYK. Total Synthesis of Actinophyllic Acid. Angew Chem Int Ed Engl 2017; 56:12277-12281. [DOI: 10.1002/anie.201706312] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Yu Yoshii
- Department of Chemistry; Seoul National University; Gwanak-1 Gwanak-ro, Gwanak-gu Seoul 151-742 South Korea
- Graduate School of Pharmaceutical Sciences; Tohoku University; Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences; Tohoku University; Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - David Y.-K. Chen
- Department of Chemistry; Seoul National University; Gwanak-1 Gwanak-ro, Gwanak-gu Seoul 151-742 South Korea
| |
Collapse
|
48
|
Anugu RR, Chegondi R. Tunable Diastereoselective Desymmetrization of Cyclohexadienones Triggered by Copper-Catalyzed Three-Component Coupling Reaction. J Org Chem 2017; 82:6786-6794. [DOI: 10.1021/acs.joc.7b00936] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raghunath Reddy Anugu
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Division
of Natural Product Chemistry, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), New
Delhi 110020, India
| | - Rambabu Chegondi
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Division
of Natural Product Chemistry, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), New
Delhi 110020, India
| |
Collapse
|
49
|
Mandai H, Yasuhara H, Fujii K, Shimomura Y, Mitsudo K, Suga S. Desymmetrization of meso-1,2-Diols by a Chiral N,N-4-Dimethylaminopyridine Derivative Containing a 1,1′-Binaphthyl Unit: Importance of the Hydroxy Groups. J Org Chem 2017; 82:6846-6856. [DOI: 10.1021/acs.joc.7b00992] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroki Mandai
- Division of Applied
Chemistry,
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroshi Yasuhara
- Division of Applied
Chemistry,
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazuki Fujii
- Division of Applied
Chemistry,
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yukihito Shimomura
- Division of Applied
Chemistry,
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mitsudo
- Division of Applied
Chemistry,
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Seiji Suga
- Division of Applied
Chemistry,
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
50
|
Horwitz MA, Massolo E, Johnson JS. Phosphazene-catalyzed desymmetrization of cyclohexadienones by dithiane addition. Beilstein J Org Chem 2017; 13:762-767. [PMID: 28546832 PMCID: PMC5433211 DOI: 10.3762/bjoc.13.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/04/2017] [Indexed: 12/26/2022] Open
Abstract
We report a desymmetrization of cyclohexadienones by intramolecular conjugate addition of a tethered dithiane nucleophile. Mild reaction conditions allow the formation of diversely functionalized fused bicyclic lactones. The products participate in facially selective additions from the convex surface, leading to allylic alcohol derivatives.
Collapse
Affiliation(s)
- Matthew A Horwitz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Elisabetta Massolo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|